Zeitabhängige Diagramme
Zeitabhängige Diagramme sind eine spezielle Darstellungsform von Sachverhalten, bei denen eine beliebige physikalische Größe x von der Zeit t abhängt.
Dabei wird die Zeit t auf der Abzissen-, die abhängige Größe auf der Ordinatenachse abgetragen.
Schreibweise: x(t)-Diagramm oder x-t-Diagramm
Beispiele
- Weg-Zeit-Diagramme/ s(t)-Diagramme
- Geschwindigkeits-Zeit-Diagramme/ v(t)-Diagramme
- Temperatur-Zeit-Diagramme/ T(t)-Diagramme
Anwendung im Mathematikunterricht
Der Ort x eines Massenpunktes kann im Allgemeinen als Funktion der Zeit t dargestellt werden durch s=f(t) Unter der Geschwindigkeit versteht man die erste Ableitung der Weg-Zeit-Funktion nach der Zeit:
v=s'=f'(t) und die Beschleunigung ist die zweite Ableitung:
a=v'=s=f(t)[1]
Die Änderungsrate (Differenzenquotient)(v0t2-v0t1)/(t2-t1)beschreibt die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit).
Aufgrund dieser Sachverhalte können der Differenzenquotient sowie die erste und zweite Ableitung einer Funktion f(t) praxisnah erklärt werden.
Weblinks
[ http://riemer-koeln.de/mathematik/publikationen/videoanalyse/videoanalyse.pdf ]
Literatur
<references / >
- ↑ Blume, J. (1963): Punktmechanik. In: Wolff, G. (1963) (Hrsg.): Handbuch der Schulmathematik. Band 6. Analysis. Hannover: Hermann Schroedel, Paderborn: Ferdinand Schöningh S. 131
- ↑ Klika, M. (1997): Historische Entwicklung, Beziehungsnetze und fundamentaler Ideen. Teil II. Analysis, In: Tietze, U.-P.; Klika, M.; Wolpers, H. (2000) (Hrsg.): Mathematikunterricht in der Sekundarstufe II. Band 1. Fachdidaktische Grundfragen – Didaktik der Analysis, Braunschweig/Wiesbaden: Vieweg, S. 202