Änderungen

3 Bytes hinzugefügt ,  16:00, 28. Apr. 2013
Zeile 54: Zeile 54:     
==Beispiele für Zahlenfolgen==
 
==Beispiele für Zahlenfolgen==
==Arithmetische Zahlenfolgen==
+
===Arithmetische Zahlenfolgen===
 
Bei arithmetischen Folgen (erster Ordnung) bleibt die Differenz benachbarter Folgenglieder konstant:
 
Bei arithmetischen Folgen (erster Ordnung) bleibt die Differenz benachbarter Folgenglieder konstant:
 
<math>a_n-a_{n-1}=d=const.</math> <br/> Sie lassen sich rekursiv darstellen: <math>a_n=a_{n-1}+d.</math> Durch sukzessives Einsetzen der Vorgängerglieder erhält man eine funktionale Darstellung: <math>a_n=f(a_{n-1})=a_{n-1}+d=(a_{n-2}+d)+d=a_{n-2}+2d=\dots=a_0+nd=f(n).</math><br />Die Bezeichnung "arithmetisch" leitet sich davon ab, dass von drei benachbarten Gliedern einer arithmetischen Folge das mittlere immer das arithmetische Mittel der beiden benachbarten Glieder ist:
 
<math>a_n-a_{n-1}=d=const.</math> <br/> Sie lassen sich rekursiv darstellen: <math>a_n=a_{n-1}+d.</math> Durch sukzessives Einsetzen der Vorgängerglieder erhält man eine funktionale Darstellung: <math>a_n=f(a_{n-1})=a_{n-1}+d=(a_{n-2}+d)+d=a_{n-2}+2d=\dots=a_0+nd=f(n).</math><br />Die Bezeichnung "arithmetisch" leitet sich davon ab, dass von drei benachbarten Gliedern einer arithmetischen Folge das mittlere immer das arithmetische Mittel der beiden benachbarten Glieder ist:
Zeile 70: Zeile 70:  
<math>s_{n+1}-s_n=\sum_{i=0}^{n}a_i-n^2=\sum_{i=0}^{n-1}a_i+a_{n}-n^2=n^2+(1+2n)-n^2=1+2n.</math><br  />
 
<math>s_{n+1}-s_n=\sum_{i=0}^{n}a_i-n^2=\sum_{i=0}^{n-1}a_i+a_{n}-n^2=n^2+(1+2n)-n^2=1+2n.</math><br  />
 
Der Abstand zwischen zwei Quadratzahlen ist eine ungerade natürliche Zahl. Die Folge der Abstände zweier Quadratzahlen bildet demnach eine arithmetische Folge. Die Quadratzahlen gehören deshalb zu den arithmetischen Folgen zweiter Ordnung. Nicht die Differenz der Qudratzahlen selbst ist eine konstante Zahl d, sondern die Differenz der Abstände von je zwei Quadratzahlen ist eine konstante Zahl d.<br />
 
Der Abstand zwischen zwei Quadratzahlen ist eine ungerade natürliche Zahl. Die Folge der Abstände zweier Quadratzahlen bildet demnach eine arithmetische Folge. Die Quadratzahlen gehören deshalb zu den arithmetischen Folgen zweiter Ordnung. Nicht die Differenz der Qudratzahlen selbst ist eine konstante Zahl d, sondern die Differenz der Abstände von je zwei Quadratzahlen ist eine konstante Zahl d.<br />
 +
 
==Geometrische Zahlenfolgen==
 
==Geometrische Zahlenfolgen==
 
Bei geometrischen Folgen ist der Quotient zweier aufeinanderfolgender Folgenglieder konstant:
 
Bei geometrischen Folgen ist der Quotient zweier aufeinanderfolgender Folgenglieder konstant:
48

Bearbeitungen