Änderungen

20 Bytes hinzugefügt ,  15:25, 18. Aug. 2013
K
Zeile 141: Zeile 141:  
| Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen.
 
| Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen.
 
|-
 
|-
| <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>  || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph'''). Es gilt <math>{{\operatorname{G}}_{f}}</math>
+
| <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>  || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph'''). Es gilt <math>{{\operatorname{G}}_{f}}\subseteq A\times B</math>.
 
|}
 
|}