Änderungen

K
Zeile 69: Zeile 69:  
Diese Fassung des Funktionsbegriffs auf mengentheoretischer Grundlage entsprach den Bemühungen der Mathematik des 20. Jhs., das mathematische „Gebäude“ auf wenigen Fundamenten aufzubauen, um damit die Argumentationsbasis klein zu halten: <ref>Vgl. z. B. [Hischer 2012].</ref>
 
Diese Fassung des Funktionsbegriffs auf mengentheoretischer Grundlage entsprach den Bemühungen der Mathematik des 20. Jhs., das mathematische „Gebäude“ auf wenigen Fundamenten aufzubauen, um damit die Argumentationsbasis klein zu halten: <ref>Vgl. z. B. [Hischer 2012].</ref>
   −
==Aktuell: Die große Vielfalt — viele „Gesichter“ von Funktionen==
+
==<div id="warum vielfältige Gesichter von Funktionen?"></div>Aktuell: Die große Vielfalt — viele „Gesichter“ von Funktionen==
<div id="warum vielfältige Gesichter von Funktionen?"></div>Der 4000 Jahre lange Weg der kulturgeschichtlichen Entwicklung des Funktionsbegriffs von ''babylonischen Keilschrifttafeln'' bis hin zur mengentheoretischen Auffassung von ''„Funktion als rechtseindeutige Relation“'' startete ruhig und fast unmerklich, nahm mit Beginn der Neuzeit an Fahrt auf und explodierte dann mit ungeheurer Wucht seit der Mitte des 19. Jahrhunderts. Das Ergebnis in seiner nahezu vollendeten Form durch [http://de.wikipedia.org/wiki/Felix_Hausdorff Hausdorff] und die Etablierung durch die [http://de.wikipedia.org/wiki/Nicolas_Bourbaki Bourbaki-Gruppe] muss als wissenschaftliche Glanzleistung der Mathematik angesehen werden: <ref>Aus dem ersten Absatz des ''Fazits'' bei [Hischer 2012, 163]; der nachfolgende Originaltext schließt daran an.</ref>
+
Der 4000 Jahre lange Weg der kulturgeschichtlichen Entwicklung des Funktionsbegriffs von ''babylonischen Keilschrifttafeln'' bis hin zur mengentheoretischen Auffassung von ''„Funktion als rechtseindeutige Relation“'' startete ruhig und fast unmerklich, nahm mit Beginn der Neuzeit an Fahrt auf und explodierte dann mit ungeheurer Wucht seit der Mitte des 19. Jahrhunderts. Das Ergebnis in seiner nahezu vollendeten Form durch [http://de.wikipedia.org/wiki/Felix_Hausdorff Hausdorff] und die Etablierung durch die [http://de.wikipedia.org/wiki/Nicolas_Bourbaki Bourbaki-Gruppe] muss als wissenschaftliche Glanzleistung der Mathematik angesehen werden: <ref>Aus dem ersten Absatz des ''Fazits'' bei [Hischer 2012, 163]; der nachfolgende Originaltext schließt daran an.</ref>
 
:: Doch was ist von dieser begrifflichen Ausschärfung übrig geblieben, wenn man sich [...] den tatsächlich heute praktizierten Umgang in der Mathematik und ihren Anwendungen mit dem vor Augen führt, was dort jeweils „Funktion“ genannt wird? Braucht „man“ angesichts der „vielen Gesichter“, unter denen uns Funktionen nun begegnen, den erreichten formalen „begrifflichen“ Höhenflug vielleicht in aller Regel gar nicht, weil – gerade bei „Anwendern“ – ganz andere Fragen „interessant“ sind oder geworden sind?  
 
:: Doch was ist von dieser begrifflichen Ausschärfung übrig geblieben, wenn man sich [...] den tatsächlich heute praktizierten Umgang in der Mathematik und ihren Anwendungen mit dem vor Augen führt, was dort jeweils „Funktion“ genannt wird? Braucht „man“ angesichts der „vielen Gesichter“, unter denen uns Funktionen nun begegnen, den erreichten formalen „begrifflichen“ Höhenflug vielleicht in aller Regel gar nicht, weil – gerade bei „Anwendern“ – ganz andere Fragen „interessant“ sind oder geworden sind?  
 
:: Und weiter: Braucht man vielleicht auch „Mengenlehre“ und „Logik“ gar nicht mehr (wie ehedem?) so sehr in der Mathematik – so möchte man fragen angesichts der Tatsache, dass entsprechende Vorlesungen kaum mehr angeboten werden, und wenn, dann eher in der Informatik oder in der Philosophie. Ist vielleicht vieles, was ursprünglich (z. B. mit [http://de.wikipedia.org/wiki/Georg_Cantor Cantor], [http://de.wikipedia.org/wiki/Gottlob_Frege Frege] und [http://de.wikipedia.org/wiki/Bertrand_Russell Russell] usw.) in die Mathematik gehörte, nunmehr in die Informatik abgewandert – eine Disziplin, die u. a. deshalb in den 1960er Jahren entstanden ist, weil die Mathematiker sich damals mehrheitlich nicht für die aufkommenden Fragestellungen interessierten oder interessieren wollten? So ist ja die Informatik als neue Disziplin u. a. von Mathematikern begründet worden, die in der Mathematik nicht mehr die Heimat fanden, die sie suchten.
 
:: Und weiter: Braucht man vielleicht auch „Mengenlehre“ und „Logik“ gar nicht mehr (wie ehedem?) so sehr in der Mathematik – so möchte man fragen angesichts der Tatsache, dass entsprechende Vorlesungen kaum mehr angeboten werden, und wenn, dann eher in der Informatik oder in der Philosophie. Ist vielleicht vieles, was ursprünglich (z. B. mit [http://de.wikipedia.org/wiki/Georg_Cantor Cantor], [http://de.wikipedia.org/wiki/Gottlob_Frege Frege] und [http://de.wikipedia.org/wiki/Bertrand_Russell Russell] usw.) in die Mathematik gehörte, nunmehr in die Informatik abgewandert – eine Disziplin, die u. a. deshalb in den 1960er Jahren entstanden ist, weil die Mathematiker sich damals mehrheitlich nicht für die aufkommenden Fragestellungen interessierten oder interessieren wollten? So ist ja die Informatik als neue Disziplin u. a. von Mathematikern begründet worden, die in der Mathematik nicht mehr die Heimat fanden, die sie suchten.