| * Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>. | | * Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>. |
− | * Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen, was streng genommen nicht korrekt ist, weil ja nicht die Funktion „Veränderliche“ hat, sondern die Funktionswerte sind im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|Funktionsterme]]. | + | * Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen, was streng genommen nicht korrekt ist, weil ja nicht die Funktion „Veränderliche“ hat, sondern die Funktionswerte sind im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaute [[Term|Funktionsterme]]. |
| * Mit <math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> ist <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''. | | * Mit <math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> ist <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''. |