Änderungen

Die Seite wurde neu angelegt: „<!-- Dissertationen grundsätzlich mit der folgenden Vorlage "diss" erstellen! --> <!-- Falls Sie weitere Angaben machen möchten, dann bitte im darauf folgend…“
<!-- Dissertationen grundsätzlich mit der folgenden Vorlage "diss" erstellen! -->
<!-- Falls Sie weitere Angaben machen möchten, dann bitte im darauf folgenden Freitext. -->
{{habil
| name= Andreas Vohns <!-- Name der Autorin/des Autors -->
| titel = {{PAGENAME}} <!-- Titel der Dissertation (gleich dem Seitennamen) -->
| hochschule= Alpen-Adria-Universität Klagenfurt <!-- Name der Hochschule -->
| jahr = 2013 <!-- Jahr der Promotion -->
| typ = Habilitation <!--Typ angeben: Dissertation , A , Habilitation , B -->
| betreut1 = <!-- Erstbetreuer/in -->
| betreut2 = <!-- Zweitbetreuer/in -->
| begutachtet1 = Roland Fischer <!-- Erstgutachter/in -->
| begutachtet2 = Lisa Hefendehl-Hebeker <!-- Zweitgutachter/in -->
| begutachtet3 = <!-- ggf. Drittgutacher/in -->
| download = <!-- Download-URL (inkl. http://) -->
| sprache = <!-- Nur ausfüllen, falls nicht Deutsch -->
| note = <!-- in Worten oder Zahlen -->
| pruefungam = <!-- Datum der mündlichen Prüfung in Form 25.12.2009 -->
| schulart = <!-- Hauptschule, Realschule, ... -->
| stufe = <!-- Primarstufe, Sekundarstufe 1, Sekundarstufe 2, ... -->
}}

== Zusammenfassung ==
Die kumulative Habilitation umfasst bildungstheoretische und sachanalytische Studien zur Frage der Ermöglichung mathematischen Verstehens. Eine besondere Rolle spielt dabei die Frage nach der Bedeutung von Differenzerlebnissen und Kohärenzerfahrungen, die auf unterschiedlichen Ebenen des Bildungsprozesses (fachlich-epistemologisch, lern- und kognitionspsychologisch, unterrichtsmethodisch) und verschiedende Dimensionen (synchron, diachron) desselben ausgemacht und analysiert werden.

Die Arbeit ist in drei Teilstudien untergliedert:
* Orientierung an mathematischen Ideen
* Mathematik im Kontext fächerorientierter Allgemeinbildung
* Performanz - Kompetenz - Reflexion

== Auszeichnungen ==
<!-- Hier bitte eventuell erhaltene Auszeichnungen/Preise als Liste aufführen.
Beispiele:
* Erster Preis
* Zweiter Preis -->

== Schlagworte ==
<!-- Bitte Schlagworte mit [[...]] umschließen, um auf die Enzyklopädie zu verweisen
Beispiele:
[[Dynamische Geometrie]], [[DGS]] -->
[[Bildung]], [[Fundamentale Ideen]], [[Stoffdidaktik]]
== Kontext ==
<!-- Hier ist Raum, um die Arbeit in den Forschungskontext einzubetten -- verwandte
Dissertationen sollten genannt werden, Arbeitsgruppen oder Konferenzen,
die sich mit dem Thema beschäftigen, etc. -->
=== Literatur ===
Zur Teilstudie "Orientierung an mathematischen Ideen":
* Vohns A. (2010): Fünf Thesen zur Bedeutung von Kohärenz- und Differenzerfahrungen im Umfeld einer Orientierung an mathematischen Ideen. In: Journal für Mathematik-Didaktik (31), S. 227-255.
Zur Teilstudie "Mathematik im Kontext fächerorientierter Allgemeinbildung"
* Vohns A. (2010): Mathematik im Kontext. In: M. Helmerich, K. Lengnink, G. Nickel, M. Rathgeb (Hrsg.): Mathematik Verstehen - Philosophische und Didaktische Perspektiven, S. 221-233.
* Vohns A. (2010): Relative Armut, relative Menschenwürde - relatives Desinteresse? In: Gesellschaft. Wirtschaft. Politik - Sozialwissenschaften für politische Bildung (59), S. 367-375.
*Vohns A. (2012): Regelhafte Darstellung und Verarbeitung. In: R. Fischer, U. Greiner, H. Bastel (Hrsg.): Domänen fächerorientierter Allgemeinbildung., S. 194-210.
Zur Teilstudie "Performanz - Kompetenz - Reflexion":
*Vohns A. (2013): Zur Bedeutung mathematischer Handlungen im Bildungsprozess und als Bildungsprodukte. In: M. Rathgeb, M. Helmerich, R. Krömer, K. Lengnink, G. Nickel (Hrsg.): Mathematik im Prozess. Philosophische, Historische und Didaktische Perspektiven, S. 319-333.
* Vohns A. (2013): Von der Vektorrechnung zum reflektierten Umgang mit Vektoren. In: H. Allmendinger, K. Lengnink, A. Vohns, G. Wickel (Hrsg.): Mathematik verständlich unterrichten – Perspektiven für Unterricht und Lehrerbildung, S. 147-166.
* Vohns A. (2013): Algebraisieren erleben und reflektieren – Dreickstransversalen und besondere Punkte. In: Praxis der Mathematik in der Schule (PM), *S. 37-41.


=== Links ===
<!-- ggf. Literaturangaben -->
== Diskussion ==
<!-- Hier kann kritisch (aber sachlich) zur Arbeit Stellung genommen werden. -->
128

Bearbeitungen