Zeile 3: |
Zeile 3: |
| === Lernvideos für den Einsatz im Mathematikunterricht ab 2013 bis dato === | | === Lernvideos für den Einsatz im Mathematikunterricht ab 2013 bis dato === |
| | | |
− | "Umgedrehter Mathematikunterricht in Verbindung mit Wochenplanarbeit" (umgedrehter Unterricht, auch flip teaching, flipped classroom, inverted teaching genannt). Bereitstellung kostenfreier Mathematik-Lernvideos mit Zusatzmaterial (z.B. GeoGebra) zur individuellen Förderung und zum selbstständigen Arbeiten meiner Schülerinnen und Schüler zu aktuellen Themen meines am Eschbach-Gymnasium Stuttgart stattfindenden Mathematikunterrichts. | + | "Umgedrehter Mathematikunterricht in Verbindung mit Wochenplanarbeit" (umgedrehter Unterricht, auch flip teaching, flipped classroom, inverted teaching genannt). Bereitstellung kostenfreier Mathematik-Lernvideos mit Zusatzmaterial (z.B. GeoGebra) zur individuellen Förderung und zum selbstständigen Arbeiten meiner Schülerinnen und Schüler zu aktuellen Themen meines am Eschbach-Gymnasium Stuttgart stattfindenden Mathematikunterrichts.<BR> |
| Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/index.html | | Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/index.html |
| | | |
Zeile 47: |
Zeile 47: |
| * '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt. | | * '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt. |
| * '''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. | | * '''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. |
| + | |
| + | ====Einführung in die Differenzialrechnung==== |
| + | * '''Steigung einer Geraden'''. In diesem Lernvideo wird das Thema: "Steigung einer Geraden“ vielseitig besprochen. Auf unterschiedlichen Wegen werden entweder die Steigungszahl m oder der Steigungswinkel a einer Geraden g berechnet. |
| + | * '''Differenzenquotient (mittlere Änderungsrate)'''. Im Lernvideo wird die geometrische Bedeutung des Differenzenquotienten in GeoGebra umfassend illustriert. Zu Beginn wird eine Definition für den Differenzenquotienten aus einfachen Beispielen zur Bestimmung der mittleren Änderungsrate für h ungleich Null erarbeitet. |
| + | * '''Differenzenquotient und lineare Funktionen'''. Im Lernvideo wird der Differenzenquotient auf lineare Funktionen angewendet und analytisch durch die Steigungszahl m aus f(x)=m*x+n beschrieben. Es wird ein Satz formuliert und bewiesen. |
| + | * '''Differenzenquotient und spezielle quadratische Funktion'''. Im Lernvideo wird der Differenzenquotient auf eine spezielle quadratische Funktion f angewendet und analytisch durch den Term: 2*x0 + h beschrieben. Es wird ein Satz formuliert. Es folgt eine Übung zur Tätigkeit: Beweisen. |
| + | * '''Beobachtungen unter dem Graphen-Mikroskop'''. Im Lernvideo (ohne Ton) werden an der Funktion f mit f(x) = 0.1*x2 zwei Simulationsexperimente in GeoGebra demonstriert, die das „Erforschen“ zur Linearisierung differenzierbarer Funktionen anschaulich motivieren sollen. |
| + | * '''Das Tangentenproblem'''. Im Lernvideo wird der Begriff der lokalen Steigung einer Funktion, die sich an der Stelle x_0 unter dem „Graphen-Mikroskop“ linearisieren lässt, durch verschiedene Simulationsexperimente in GeoGebra induktiv erarbeitet. Das Tangentenproblem entwickelt sich aus dem Verschwinden der Sekante für h gegen null (numerische Division durch null!). Es folgt eine Definition für die Ableitung f Strich von x null in einer für Lernende der Klassenstufe 10 angemessenen Fachsprache. Eine exakte Definition für den Grenzübergang des Differenzenquotienten für h gegen null ist auf Grund der eingeschränkten Begriffsbildung didaktisch nicht angebracht. |
| + | * '''Ableitung einer Funktion an der Stelle x_0'''. Im Lernvideo werden Übungen am Differenzenquotienten zur Berechnung der Ableitung f Strich von x_0 exemplarisch angeleitet. |
| + | * '''Gleichung der Tangente in x_0'''. Im Lernvideo wird die allgemeine Gleichung einer Tangente t zu einer differenzierbaren Funktion f an der Stelle x_0 hergeleitet. Ein Rechenbeispiel verdeutlicht die Anwendung dieser allgemeinen Tangentengleichung. |
| | | |
| ====Gleichungssysteme==== | | ====Gleichungssysteme==== |
Zeile 54: |
Zeile 64: |
| * '''Einsetzungsverfahren'''. Im Lernvideo wird das Einsetzungsverfahren zum Lösen linearer Gleichungssysteme vom Typ (2x2) an zwei Beispielen erläutert. In der CAS- und Graphikansicht von GeoGebra werden die interaktiven Abläufe für die Kontrollrechnungen zur Existenz und die Eindeutigkeit der Lösung demonstriert. | | * '''Einsetzungsverfahren'''. Im Lernvideo wird das Einsetzungsverfahren zum Lösen linearer Gleichungssysteme vom Typ (2x2) an zwei Beispielen erläutert. In der CAS- und Graphikansicht von GeoGebra werden die interaktiven Abläufe für die Kontrollrechnungen zur Existenz und die Eindeutigkeit der Lösung demonstriert. |
| * '''Additionsverfahren'''. Im Lernvideo wird an zwei Beispielen das Additionsverfahren zum Lösen linearer Gleichungssysteme vom Typ (2x2) erläutert. Dabei wird herausgearbeitet, wie man nach entsprechenden Umformungen an den linearen Gleichungen das Additionsverfahren vorteilhaft anwenden kann. GeoGebra wird zur Beantwortung der Existenz und der Eindeutigkeit der Lösung als Kontrollwerkzeug eingesetzt. | | * '''Additionsverfahren'''. Im Lernvideo wird an zwei Beispielen das Additionsverfahren zum Lösen linearer Gleichungssysteme vom Typ (2x2) erläutert. Dabei wird herausgearbeitet, wie man nach entsprechenden Umformungen an den linearen Gleichungen das Additionsverfahren vorteilhaft anwenden kann. GeoGebra wird zur Beantwortung der Existenz und der Eindeutigkeit der Lösung als Kontrollwerkzeug eingesetzt. |
| + | * '''Lösungsmengen von LGS (2x2)'''. Im Lernvideo wird zu Anfang ein LGS vom Typ (2x2) mittels Einsetzungsverfahren ohne Taschenrechner gelöst. Die vermutlich existierende Lösung wird durch eine Probe am LGS bewiesen. Die Lösungsmenge wird notiert. Weitere Arten von Lösungsmengen werden in Geogebra exemplarisch beschrieben. Am Ende folgt eine Übersicht als Zusammenfassung. |
| + | |
| + | ====Kongruenz==== |
| + | * '''Kongruente Figuren aus Bewegungen'''. Im Lernvideo wird der Begriff „kongruente Figuren“ mittels des vorangestellten Begriffs der Bewegung exemplarisch eingeführt. Die Eigenschaften der Längen- und Winkeltreue bei Bewegungen werden in GeoGebra dynamisch an Vierecken veranschaulicht. Weitere Eigenschaften werden verbal beschrieben. |
| + | * '''Kongruenzsatz sws'''. Im Lernvideo wird der Kongruenzsatz sws über eine Schnittvorlage für kongruente Dreiecke eingeführt und mit dem Bewegungsbegriff für kongruente Figuren bewiesen. Darauf aufbauend wird das gleichnamige Konstruktionsprinzip vorgestellt und als Zirkel-Lineal-Konstruktion beschrieben. |
| + | * '''Figuren im Raum'''. |
| + | * '''Beweisen mit den Kongruenzsätzen'''. Im Lernvideo wird in einem gleichseitigen Dreieck ein Innendreieck festgelegt. Von diesem wird behauptet, dass es auch gleichseitig sei. Es folgt ein ausführlicher Beweistext mit Übungen. Jeder Schritt soll schließlich verstanden und an einer Skizze nachvollzogen werden. Der Beweistext dient als exemplarische Vorlage für andere Beweise, die im Unterricht geübt werden. Dieser Beweistext ist vor den Übungen im Unterricht zu lernen. |
| | | |
| ====Kreis- und Körperberechnungen==== | | ====Kreis- und Körperberechnungen==== |
Zeile 59: |
Zeile 76: |
| * '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann. | | * '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann. |
| * '''Kreistangente'''. Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert. Es werden die drei Fragen: 1. Was ist eine Kreistangente? 2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt? 3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt? beantwortet und begründet. Am Ende des LV werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen. Hierzu wird von mir die Mathematiksoftware GeoGebra genutzt. | | * '''Kreistangente'''. Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert. Es werden die drei Fragen: 1. Was ist eine Kreistangente? 2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt? 3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt? beantwortet und begründet. Am Ende des LV werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen. Hierzu wird von mir die Mathematiksoftware GeoGebra genutzt. |
| + | |
| + | ====Lineare und quadratische Funktionen==== |
| + | * '''Parameter einer linearen Funktion'''. Im Lernvideo werden die beiden Parameter: „Steigung“ und „Ordinatenabschnitt“ linearer Funktionen sowie der Begriff „allgemeine Form linearer Funktionsgleichungen“ eingeführt. Es folgen zwei Aufgaben zur Untersuchung des Einflusses der beiden Parameter m und n auf den Graphen der jeweiligen linearen Funktionen. GeoGebra-Arbeitsblätter unterstützen mit ihren interaktiven Anwendungsmöglichkeiten die Lösungen der beiden experimentellen Aufgaben. |
| + | * '''Proportionalität von Masse und Volumen eines Körpers'''. Im Lernvideo wird eine Aufgabe aus dem Anfangsunterricht Physik besprochen. Es geht dabei um den proportionalen Zusammenhang zwischen Masse und Volumen eines Körpers (homogene Masseverteilung sei vorausgesetzt). Es wird einerseits eine Prüffrage gestellt: Ob ein gemessener Körper aus Aluminium besteht oder nicht und zum anderen um die Erzeugung von Wertepaaren deren Punkte auf dem Graphen einer proportionalen Funktion und somit Körper aus Aluminium repräsentieren. Dabei wird der Aufbau der Funktionsgleichung einer proportionalen Funktion allgemein formal beschrieben. |
| | | |
| ====Planimetrie==== | | ====Planimetrie==== |
Zeile 93: |
Zeile 114: |
| * '''Steigerung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem vermehrten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. | | * '''Steigerung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem vermehrten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. |
| * '''Senkung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem verminderten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. | | * '''Senkung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem verminderten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt. |
| + | |
| + | ====Punkte | Vektoren | Geraden==== |
| + | * '''Punkte im Raum (3D)'''. Im Lernvideo wird die Lage eines Raumpunktes P in einem x-y-z-Koordinatensystem beschrieben. Zusätzlich zu den Erläuterungen im Lehrbuch zum Zeichnen von Punkten mit drei Koordinaten auf Papier unterstützt dieses Video die 3D-Darstellung von Punkten und Strecken im Raum durch verschiedenartige Perspektivwechsel in GeoGebra. Es folgen Hinweise zur Lösung der Frage: Wie bestimmt man den Abstand eines Raumpunktes P zum Ursprung O des x-y-z-Koordinatensystems? |
| | | |
| ====Rechnen mit rationalen Zahlen==== | | ====Rechnen mit rationalen Zahlen==== |