Änderungen

keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:  
== Übersicht ==
 
== Übersicht ==
 +
* Streng genommen ist zwischen „Funktionsgraph“ (als Menge geordneter Paare) und der visualisierenden Darstellung durch ein „Schaubild“ zu unterscheiden:
 
Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br />
 
Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br />
 
Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird.<br />
 
Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird.<br />
Zeile 5: Zeile 6:  
Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br />
 
Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br />
 
(Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich aber in den meisten unterrichtsrelevanten Fällen üblich.)
 
(Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich aber in den meisten unterrichtsrelevanten Fällen üblich.)
   
== Visualisierung von Funktionsgraphen ==
 
== Visualisierung von Funktionsgraphen ==
 
* Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert.
 
* Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert.