Zeile 4: |
Zeile 4: |
| : Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br /> | | : Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br /> |
| : Dann ist der '''[[Funktion:_mengentheoretische_Auffassung#Funktionsgraph_2|Funktionsgraph]]''' von <math>f</math> durch <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> definiert.<br /> | | : Dann ist der '''[[Funktion:_mengentheoretische_Auffassung#Funktionsgraph_2|Funktionsgraph]]''' von <math>f</math> durch <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> definiert.<br /> |
− | Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br /> | + | Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>. (Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird.)<br /> |
− | (Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich aber in den meisten unterrichtsrelevanten Fällen üblich.)
| + | <br /> |
| + | Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich aber in den meisten unterrichtsrelevanten Fällen üblich. |
| == Visualisierung von Funktionsgraphen == | | == Visualisierung von Funktionsgraphen == |
| * Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert. | | * Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert. |