Änderungen

keine Bearbeitungszusammenfassung
Zeile 20: Zeile 20:  
''Definition:''
 
''Definition:''
 
: Es sei <math>f\colon \mathbb{R} \rightarrow \mathbb{R} </math> mit <math>m\in \mathbb{R}</math>, <math>b\in \mathbb{R}</math> und <math>f=m·x+b</math> für alle <math>x\in \mathbb{R}</math>.<br />
 
: Es sei <math>f\colon \mathbb{R} \rightarrow \mathbb{R} </math> mit <math>m\in \mathbb{R}</math>, <math>b\in \mathbb{R}</math> und <math>f=m·x+b</math> für alle <math>x\in \mathbb{R}</math>.<br />
: <math>f</math> ist dann eine '''lineare Funktion'''
+
: <math>f</math> ist dann eine '''lineare Funktion'''.
 
Das ''Schaubild'' des Funktionsgraphen von <math>f</math> ist eine '''Gerade''' mit der '''Steigung''' <math>m</math>. Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der <math>x</math>–Achse als Rechtsachse und der <math>y</math>–Achse als Hochachse dar, so ist <math>b</math> der sog. '''<math>y</math>–Achsenabschnitt''', die Gerade verläuft also dann durch den Punkt mit den Koordinaten <math>(0;b)</math>.
 
Das ''Schaubild'' des Funktionsgraphen von <math>f</math> ist eine '''Gerade''' mit der '''Steigung''' <math>m</math>. Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der <math>x</math>–Achse als Rechtsachse und der <math>y</math>–Achse als Hochachse dar, so ist <math>b</math> der sog. '''<math>y</math>–Achsenabschnitt''', die Gerade verläuft also dann durch den Punkt mit den Koordinaten <math>(0;b)</math>.