Änderungen

Keine Änderung der Größe ,  21:06, 5. Apr. 2018
K
Zeile 13: Zeile 13:  
Es ist nicht sinnvoll, im Mathematikunterricht bei der Betrachtung von numerischen Gleichungen bereits dann von „Lösungsmengen“ zu sprechen, wenn noch nicht die Erfahrung gemacht worden ist, dass Gleichungen keine oder mehrere Lösungen haben können. Dieser Fall tritt zwar bei quadratischen Gleichungen auf, jedoch ist an dieser Stelle die Bezeichnung „Lösungsmenge“ noch nicht zwingend erforderlich, weil es hier ja nur genau eine Lösung, zwei Lösungen oder keine Lösung gibt. Diese Schwierigkeit ist jedoch vermeidbar, wenn man früh Ungleichungen betrachtet.<br />
 
Es ist nicht sinnvoll, im Mathematikunterricht bei der Betrachtung von numerischen Gleichungen bereits dann von „Lösungsmengen“ zu sprechen, wenn noch nicht die Erfahrung gemacht worden ist, dass Gleichungen keine oder mehrere Lösungen haben können. Dieser Fall tritt zwar bei quadratischen Gleichungen auf, jedoch ist an dieser Stelle die Bezeichnung „Lösungsmenge“ noch nicht zwingend erforderlich, weil es hier ja nur genau eine Lösung, zwei Lösungen oder keine Lösung gibt. Diese Schwierigkeit ist jedoch vermeidbar, wenn man früh Ungleichungen betrachtet.<br />
   −
'''Beispiel''': Gesucht seien (die) Lösungen von <math>-1 < x\leq 3</math>. Hier wird die Abhängigkeit von der Grundmenge deutlich (auch wenn der Mengenbegriff nicht verfügbar sein sollte), was sich wie folgt notieren lässt: <br />   
+
'''Beispiel''': Gesucht seien (die) Lösungen von <math>-2 < x\leq 3</math>. Hier wird die Abhängigkeit von der Grundmenge deutlich (auch wenn der Mengenbegriff nicht verfügbar sein sollte), was sich wie folgt notieren lässt: <br />   
* <math>L_{\mathbb{N}}=\{0,1,2,3\}</math>, <math>L_{\mathbb{Z}}=\{-1,0,1,2,3\}</math>, <math>L_{\mathbb{R}}= {]-1, 3]}</math> (halboffenes [https://de.wikipedia.org/wiki/Intervall_(Mathematik) Intervall]). <br />  
+
* <math>L_{\mathbb{N}}=\{0,1,2,3\}</math>, <math>L_{\mathbb{Z}}=\{-1,0,1,2,3\}</math>, <math>L_{\mathbb{R}}= {]-2, 3]}</math> (halboffenes [https://de.wikipedia.org/wiki/Intervall_(Mathematik) Intervall]). <br />  
 
Vollrath  empfiehlt zum Verständnis  von „Lösungsmenge“ die Betrachtung von Gleichungen, die Terme der  sog. Ganzteilfunktion enthalten („Integer-Funktion“, früher auch „Gauß-Klammer“ genannt, heute „ceil“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Abrundungsfunktion“], ferner zusätzlich „floor“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Aufrundungsfunktion“]).<ref>[Vollrath 1974, S. 92.]</ref> <br />
 
Vollrath  empfiehlt zum Verständnis  von „Lösungsmenge“ die Betrachtung von Gleichungen, die Terme der  sog. Ganzteilfunktion enthalten („Integer-Funktion“, früher auch „Gauß-Klammer“ genannt, heute „ceil“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Abrundungsfunktion“], ferner zusätzlich „floor“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Aufrundungsfunktion“]).<ref>[Vollrath 1974, S. 92.]</ref> <br />
 
Betrachtet man z. B. die Gleichung  <math>\lfloor x \rfloor = 2</math>, so ist <math>L= {[2, 3[}</math>
 
Betrachtet man z. B. die Gleichung  <math>\lfloor x \rfloor = 2</math>, so ist <math>L= {[2, 3[}</math>