Änderungen

K
keine Bearbeitungszusammenfassung
Zeile 40: Zeile 40:  
====2017====
 
====2017====
   −
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Abstand von zwei parallelen Geraden. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-abstand-von-zwei-parallelen-geraden/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Abstand von zwei parallelen Geraden'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-abstand-von-zwei-parallelen-geraden/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Abstand von Punkt und Gerade. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-abstand-von-punkt-und-gerade/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Abstand von Punkt und Gerade'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-abstand-von-punkt-und-gerade/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Berechnung mit dem Satz des Pythagoras I. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-i/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Berechnung mit dem Satz des Pythagoras I'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-i/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Berechnung mit dem Satz des Pythagoras II. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-ii/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Berechnung mit dem Satz des Pythagoras II'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-ii/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Berechnung mit dem Satz des Pythagoras III. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-iii/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Berechnung mit dem Satz des Pythagoras III'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-berechnung-mit-dem-satz-des-pythagoras-iii/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Schnittpunkte von Ortslinien konstruieren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-schnittpunkte-von-ortslinien-konstruieren/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Schnittpunkte von Ortslinien konstruieren'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-schnittpunkte-von-ortslinien-konstruieren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Ortslinie Mittelsenkrechte. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ortslinie-mittelsenkrechte/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Ortslinie Mittelsenkrechte'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ortslinie-mittelsenkrechte/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Ortslinie Winkelhalbierende. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ortslinie-winkelhalbierende/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Ortslinie Winkelhalbierende'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-ortslinie-winkelhalbierende/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Wo liegen alle Punkte, welche von der Geraden f den festen Abstand 3 cm haben? Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-der-geraden-f-den-festen-abstand-3-cm-haben/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Wo liegen alle Punkte, welche von der Geraden f den festen Abstand 3 cm haben?''' Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-der-geraden-f-den-festen-abstand-3-cm-haben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Wo liegen alle Punkte, welche von den beiden parallelen Gerade g und h den gleichen Abstand haben? Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-den-beiden-parallelen-gerade-g-und-h-den-gleichen-abstand-haben/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Wo liegen alle Punkte, welche von den beiden parallelen Gerade g und h den gleichen Abstand haben?''' Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-den-beiden-parallelen-gerade-g-und-h-den-gleichen-abstand-haben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Wo liegen alle Punkte, welche von einem Punkt P den festen Abstand 3 cm haben? Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-einem-punkt-p-den-festen-abstand-3-cm-haben/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Wo liegen alle Punkte, welche von einem Punkt P den festen Abstand 3 cm haben?''' Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-wo-liegen-alle-punkte-welche-von-einem-punkt-p-den-festen-abstand-3-cm-haben/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Quadratwurzel und reelle Zahlen, Tabellenkalkulation (TK) – Heronverfahren. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tabellenkalkulation-tk-heronverfahren/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Quadratwurzel und reelle Zahlen, '''Tabellenkalkulation (TK) – Heronverfahren'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tabellenkalkulation-tk-heronverfahren/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, Interpretation eines v-t-Diagramms. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-interpretation-eines-v-t-diagramms/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, '''Interpretation eines v-t-Diagramms'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-interpretation-eines-v-t-diagramms/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Umkehrung Strahlensatz. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-umkehrung-strahlensatz/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, '''Umkehrung Strahlensatz'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-umkehrung-strahlensatz/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Systeme linearer Gleichungen, Einsetzungsverfahren mit Anweisungen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einsetzungsverfahren-mit-anweisungen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Systeme linearer Gleichungen, '''Einsetzungsverfahren mit Anweisungen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-einsetzungsverfahren-mit-anweisungen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, Durchschnitts- und Augenblicksgeschwindigkeit. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-durchschnittsgeschwindigkeit-und-augenblicksgeschwindigkeit/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, '''Durchschnitts- und Augenblicksgeschwindigkeit'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-durchschnittsgeschwindigkeit-und-augenblicksgeschwindigkeit/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Rechnen mit rationalen Zahlen, Termwerte berechnen durch Ersetzen von Variablen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-termwerte-berechnen-durch-ersetzen-von-variablen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Rechnen mit rationalen Zahlen, '''Termwerte berechnen durch Ersetzen von Variablen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-termwerte-berechnen-durch-ersetzen-von-variablen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Rechnen mit rationalen Zahlen, Terme mit einer Variablen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-terme-mit-einer-variablen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Rechnen mit rationalen Zahlen, '''Terme mit einer Variablen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-terme-mit-einer-variablen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, Kräfteaddition – Kräfteparallelogramm. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-kraefteaddition-kraefteparallelogramm/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Physikalisch-mathematische Anwendungen, '''Kräfteaddition – Kräfteparallelogramm'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-kraefteaddition-kraefteparallelogramm/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Lineare Tabelle – durch interaktives Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-tabelle-durch-interaktives-rechnen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Lineare Tabelle – durch interaktives Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-tabelle-durch-interaktives-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Lineare Tabelle – durch direktes Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-tabelle-durch-direktes-rechnen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Lineare Tabelle – durch direktes Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-lineare-tabelle-durch-direktes-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Exponentielle Tabelle – durch direktes Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exponentielle-tabelle-durch-direktes-rechnen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Exponentielle Tabelle – durch direktes Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exponentielle-tabelle-durch-direktes-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Exponentielle Tabelle – durch iteratives Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exponentielle-tabelle-durch-iteratives-rechnen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Exponentielle Tabelle – durch iteratives Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-exponentielle-tabelle-durch-iteratives-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, Beschränkte Wachstumstabelle – durch iteratives Rechnen. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-beschraenkte-wachstumstabelle-durch-iteratives-rechnen/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Wachstum, '''Beschränkte Wachstumstabelle – durch iteratives Rechnen'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-beschraenkte-wachstumstabelle-durch-iteratives-rechnen/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Tangens am rechtwinkligen Dreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tangens-am-rechtwinkligen-dreieck/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Tangens am rechtwinkligen Dreieck'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-tangens-am-rechtwinkligen-dreieck/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Sinus und Kosinus am rechtwinkligen Dreieck. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-sinus-und-kosinus-am-rechtwinkligen-dreieck/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Sinus und Kosinus am rechtwinkligen Dreieck'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-sinus-und-kosinus-am-rechtwinkligen-dreieck/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Der Satz des Pythagoras im Quader. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-satz-des-pythagoras-im-quader/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Der Satz des Pythagoras im Quader'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-satz-des-pythagoras-im-quader/ Applet].
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, Der Satz des Pythagoras. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-satz-des-pythagoras/ Applet].
+
* [[Frank Schumann|Schumann, F.]] (2017). Beziehungen in geometrischen Figuren, '''Der Satz des Pythagoras'''. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-der-satz-des-pythagoras/ Applet].
 
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Gleichungen, Löse eine einfache Verhältnisgleichung nach x auf. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-loese-eine-einfache-verhaeltnisgleichung-nach-x-auf/ Applet].
 
* [[Frank Schumann|Schumann, F.]] (2017). Verallgemeinerung bei Funktionen und Gleichungen, Lineare Gleichungen, Löse eine einfache Verhältnisgleichung nach x auf. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-loese-eine-einfache-verhaeltnisgleichung-nach-x-auf/ Applet].
 
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Zentrische Streckung eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zentrische-streckung-eines-dreiecks/ Applet].
 
* [[Frank Schumann|Schumann, F.]] (2017). Kongruenz und Ähnlichkeit, Zentrische Streckung eines Dreiecks. Stuttgart, Deutschland: Private Homepage www.FSchumann.COM [http://mathe-innovativ.fschumann.com/applet-zentrische-streckung-eines-dreiecks/ Applet].
447

Bearbeitungen