Änderungen

K
Strukturanpassung
Zeile 33: Zeile 33:  
Algebra gehört zum Schlüsselbereich mathematischen Arbeitens, der in der Sekundarstufe erlernt wird, aber für alle weiterführenden Inhaltsbereiche mathematischen Handelns relevant ist. Dabei tun sich sehr viele Schülerinnen und Schüler im Umgang mit der Unbestimmtheit von Termen sowie mit der ihnen innewohnenden Generalisierbarkeit schwer. Insbesondere beim Umgang mit Gleichungen sind vorausgegangene Ausgangsschwierigkeiten nur noch schwer zu beheben. Diesen Schwierigkeiten versucht man seit langem mit Hilfe didaktischer Modelle zu begegnen, z.B. wird beim Umgang mit Gleichungen das Waagemodell eingesetzt, aber auch Schachtelgleichungen oder Termwerkstätten werden verwendet sowie virtuelle und physische Algebra-Tiles, das sind Plättchen, die Variablen und Zahlen repräsentieren. Im Vortrag wird über ein laufendes Designprojekt berichtet, das auf Konzepten zu Algebra-Tiles basiert und in dem zusammen mit Informatikerinnen und Informatikern ein digitales System zum multimodalen Lernen von Algebra entwickelt wird. Ziel dieses Projektes ist es, die Vorteile der Modalitäten virtuell und physisch zusammenzuführen und die Lehrkraft durch neue Aufgabenformen und in das System integrierte Rückmeldung im Alltagsunterricht zu entlasten. Vorgestellt wird das Konzept des Projektes sowie einige Ergebnisse.
 
Algebra gehört zum Schlüsselbereich mathematischen Arbeitens, der in der Sekundarstufe erlernt wird, aber für alle weiterführenden Inhaltsbereiche mathematischen Handelns relevant ist. Dabei tun sich sehr viele Schülerinnen und Schüler im Umgang mit der Unbestimmtheit von Termen sowie mit der ihnen innewohnenden Generalisierbarkeit schwer. Insbesondere beim Umgang mit Gleichungen sind vorausgegangene Ausgangsschwierigkeiten nur noch schwer zu beheben. Diesen Schwierigkeiten versucht man seit langem mit Hilfe didaktischer Modelle zu begegnen, z.B. wird beim Umgang mit Gleichungen das Waagemodell eingesetzt, aber auch Schachtelgleichungen oder Termwerkstätten werden verwendet sowie virtuelle und physische Algebra-Tiles, das sind Plättchen, die Variablen und Zahlen repräsentieren. Im Vortrag wird über ein laufendes Designprojekt berichtet, das auf Konzepten zu Algebra-Tiles basiert und in dem zusammen mit Informatikerinnen und Informatikern ein digitales System zum multimodalen Lernen von Algebra entwickelt wird. Ziel dieses Projektes ist es, die Vorteile der Modalitäten virtuell und physisch zusammenzuführen und die Lehrkraft durch neue Aufgabenformen und in das System integrierte Rückmeldung im Alltagsunterricht zu entlasten. Vorgestellt wird das Konzept des Projektes sowie einige Ergebnisse.
   −
===BeGREIFen des Integralbegriffs: Montessorische Lernmaterialien zur handlungs- und vorstellungsorientierten Erarbeitung der Integralrechnung===
+
=== [[Annalisa Drösemeier]], StRin, M. Ed. ([[Universität Bayreuth]]) BeGREIFen des Integralbegriffs: Montessorische Lernmaterialien zur handlungs- und vorstellungsorientierten Erarbeitung der Integralrechnung===
07.01.2019, 16:15 Uhr: [[Annalisa Drösemeier]], StRin, M. Ed. ([[Universität Bayreuth]])
+
07.01.2019, 16:15 Uhr. Ort: [[Freie Universität]], Takustr. 9 (Informatikgebäude), 14195 Berlin, großer Hörsaal
Ort: [[Freie Universität]], Takustr. 9 (Informatikgebäude), 14195 Berlin, großer Hörsaal
      
Die Integralrechnung zählt sicherlich zu den anspruchsvolleren Themengebieten der Schulmathematik. Nicht selten beschränkt sich der Analysisunterricht dabei auf Formeln und Kalküle, die auswendig gelernt, aber nicht verstanden werden. Dieses Phänomen ist durchaus nachvollziehbar, gestaltet es sich mit zunehmender Abstraktion doch immer schwieriger, mathematische Zusammenhänge zu veranschaulichen und zu vergegenständlichen. Für ein tiefgründiges Verständnis erscheint die Entwicklung tragfähiger Vorstellungen jedoch substanziell, was in den enaktiven Lernformen der Montessori-Pädagogik gelingen kann.
 
Die Integralrechnung zählt sicherlich zu den anspruchsvolleren Themengebieten der Schulmathematik. Nicht selten beschränkt sich der Analysisunterricht dabei auf Formeln und Kalküle, die auswendig gelernt, aber nicht verstanden werden. Dieses Phänomen ist durchaus nachvollziehbar, gestaltet es sich mit zunehmender Abstraktion doch immer schwieriger, mathematische Zusammenhänge zu veranschaulichen und zu vergegenständlichen. Für ein tiefgründiges Verständnis erscheint die Entwicklung tragfähiger Vorstellungen jedoch substanziell, was in den enaktiven Lernformen der Montessori-Pädagogik gelingen kann.