Änderungen

keine Bearbeitungszusammenfassung
Zeile 44: Zeile 44:     
Die Produktregel der Differentiation wird in der Regel im Analysisunterricht der Oberstufe eingeführt. Dem vorausgehend sind zunächst elementare Kenntnisse über den Grenzwert von Funktionen zu vermitteln. Ebenso wird zunächst der Differenzenquotient im Unterricht vorgestellt, mit dessen Hilfe sich die ersten Ableitungsregeln wie die Summen- und Faktorregel beweisen lassen. Diese beiden Regeln erscheinen den Schülern dabei natürlich und sind mit ihren Erwartungen konform.  
 
Die Produktregel der Differentiation wird in der Regel im Analysisunterricht der Oberstufe eingeführt. Dem vorausgehend sind zunächst elementare Kenntnisse über den Grenzwert von Funktionen zu vermitteln. Ebenso wird zunächst der Differenzenquotient im Unterricht vorgestellt, mit dessen Hilfe sich die ersten Ableitungsregeln wie die Summen- und Faktorregel beweisen lassen. Diese beiden Regeln erscheinen den Schülern dabei natürlich und sind mit ihren Erwartungen konform.  
Die Einführung der Produktregel stellt nun jedoch eine Herausforderung dar, da sich die zunächst angenommene Formel (f*g)'=f'*g' als falsch erweist. Eher unproblematisch ist hingegen die Aussage, dass das Produkt differenzierbar ist, da dies bereits von der Konvergenz her bekannt ist.<ref name="Rüthing" /> Nun muss allerdings zunächst eine entsprechende Regel gefunden werden und deren Gültigkeit bewiesen werden. Für die konkrete Einführung der Produktregel sind nun verschiedene Methoden möglich, die sich in ihrem Schwierigkeitsgrad und ihrer Herangehensweise unterscheiden.  
+
Die Einführung der Produktregel stellt nun jedoch eine Herausforderung dar, da sich die zunächst angenommene Formel <math> (fg)'=f'g' </math> als falsch erweist. Eher unproblematisch ist hingegen die Aussage, dass das Produkt differenzierbar ist, da dies bereits von der Konvergenz her bekannt ist.<ref name="Rüthing" /> Nun muss allerdings zunächst eine entsprechende Regel gefunden werden und deren Gültigkeit bewiesen werden. Für die konkrete Einführung der Produktregel sind nun verschiedene Methoden möglich, die sich in ihrem Schwierigkeitsgrad und ihrer Herangehensweise unterscheiden.  
    
=== Elementarer Beweis ===
 
=== Elementarer Beweis ===
Zeile 60: Zeile 60:     
Eine weitere von Rüthing vorgestellte Beweisidee sieht zunächst den Zwischenschritt des Beweises des Spezialfalles der Produktregel für f=g vor.<ref name="Rüthing" /> Hat man vorher die zweite Potenzfunktion eingeführt, kann hier in einer Analogie die Regel formuliert werden:
 
Eine weitere von Rüthing vorgestellte Beweisidee sieht zunächst den Zwischenschritt des Beweises des Spezialfalles der Produktregel für f=g vor.<ref name="Rüthing" /> Hat man vorher die zweite Potenzfunktion eingeführt, kann hier in einer Analogie die Regel formuliert werden:
(f*f)'=2*f'*f
+
<math> (ff)'=2f'f </math>
 
Der Beweis des Spezialfalls kann dann folgendermaßen erfolgen:<br />
 
Der Beweis des Spezialfalls kann dann folgendermaßen erfolgen:<br />
2f'(x<sub>0</sub>)f(x<sub>0</sub>)=2 lim (f(x)-f(x<sub>0</sub>))/(x-x<sub>0</sub>) * f(x<sub>0</sub>) = lim (f(x)-f(x<sub>0</sub>))/(x-x<sub>0</sub>) * (f(x<sub>0</sub>)+f(x<sub>0</sub>))= lim (f(x)-f(x<sub>0</sub>))/(x-x<sub>0</sub>) *  (f(x)+f(x<sub>0</sub>)) = lim ((f*f)(x)-(f*f)(x<sub>0</sub>))/(x-x<sub>0</sub>)
+
<math>
 +
2f'(x_{0})f(x_{0})=2 \lim {\frac {f(x)-f(x_{0})}{x-x_{0})f(x_{0})} = lim (f(x)-f(x<sub>0</sub>))/(x-x<sub>0</sub>) * (f(x<sub>0</sub>)+f(x<sub>0</sub>))= lim (f(x)-f(x<sub>0</sub>))/(x-x<sub>0</sub>) *  (f(x)+f(x<sub>0</sub>)) = lim ((f*f)(x)-(f*f)(x<sub>0</sub>))/(x-x<sub>0</sub>)
    
Durch die Einführung über den Spezialfall wird die Problematik der Ausnutzung der Stetigkeit auf eine einzelne Stelle isoliert und ist somit einfacher verständlich. Der allgemeine Fall der Produktregel wird schließlich über eine weitere, den Schülern bereits vorher bekannte Gleichung, möglich: (a*b)=1/4((a+b)<sup>2</sup>-(a-b)<sup>2</sup>).  
 
Durch die Einführung über den Spezialfall wird die Problematik der Ausnutzung der Stetigkeit auf eine einzelne Stelle isoliert und ist somit einfacher verständlich. Der allgemeine Fall der Produktregel wird schließlich über eine weitere, den Schülern bereits vorher bekannte Gleichung, möglich: (a*b)=1/4((a+b)<sup>2</sup>-(a-b)<sup>2</sup>).  
53

Bearbeitungen