Zahlenbereiche
Definition
Zahlenbereiche sind Mengen von Zahlen, wobei diese durch bestimmte Eigenschaften definiert sind. In jedem Bereich existieren arithmetische Gesetzmäßigkeiten, mit denen man innerhalb der Menge operieren kann.
Arten von Zahlenbereichen und deren Eigenschaften
Natürliche Zahlen: ℕ = {1, 2, 3,…}, ℕ0 = ℕ ∪ {0}
Ganze Zahlen: Die Menge der ganzen Zahlen enthält die Elemente und alle additiven Inversen
der Menge der natürlichen Zahlen mit Null.
mathematische Schreibweise: ℤ = {x | x ∈ ℕ0 v –x ∈ ℕ0}
Rationale Zahlen: Die Erweiterung der Menge der ganzen Zahlen um die Bruchzahlen führt zur Menge der rationalen Zahlen
mathematische Schreibweise: ℚ = {x | x= m/n mit m, n ∈ ℤ, n≠0}
Irrationale Zahlen: ǁ= Menge der unendlichen und nichtperiodischen Dezimalzahlen.
Reelle Zahlen: Im Bereich der reellen Zahlen wird die Menge der rationalen Zahlen um die Menge der irrationalen Zahlen erweitert.
mathematische Schreibweise: ℝ = ℚ ∪ ǁ
Komplexe Zahlen: Alle komplexen Zahlen lassen sich als Summe einer reellen Zahl und einem Vielfachen von i (= imaginäre Einheit)
darstellen: z = x + i·y, wobei x und y reelle Zahlen sind. x heißt Realteil von z (oder kurz Re(z)) und y Imaginärteil von z (Im(z)). Beachte: i²= -1.
mathematische Schreibweise: ℂ = {z | z = x+iy mit x,y ∈ ℝ, x=Re z, y=Im z}
Gesetzmäßigkeiten
Natürliche Zahlen
Mit je zwei natürlichen Zahlen m und n sind auch die Summe m+n und das Produkt m·n wieder eine natürliche Zahl. Für Differenzen und Quotienten gilt das im Allgemeinen nicht.
In den natürlichen Zahlen gelten folgende Rechengesetze mit m,n,k ∈ ℕ:
Kommutativgesetz für Addition: m + n = n + m
Assoziativgesetz für Addition: (m + n) + k = m + (n + k)
Kommutativgesetz für Multiplikation: m • n = n • m
Assoziativgesetz für Multiplikation: (m • n)• k = m • (n • k)
Distributivgesetz: m • (n + k) = m • n + m • k
Außerdem gelten auch die Peano-Axiome:
(P1) 1∈ ℕ
(P2) Falls n∈ ℕ, dann gibt es einen Nachfolger n‘ in ℕ, n‘ = n+1.
(P3) 1 ist kein Nachfolger.
(P4) Falls n, m ∈ ℕ und n‘= m‘ dann folgt, dass n=m.
Ganze Zahlen
In den ganzen Zahlen sind die Verknüpfungen Addition, Subtraktion und Multiplikation abgeschlossen. Für die Division gilt dies nicht.
Die Assoziativ- und Kommutativgesetze bezüglich Addition und Multiplikation, sowie das Distributivgesetz stimmen mit denen der natürlichen Zahlen überein.
Rationale Zahlen
In den rationalen Zahlen gelten die Assoziativ- und Kommutativgesetze bezüglich Addition und Multiplikation, sowie das Distributivgesetz. Dabei ist die Division im Allgemeinen gültig ist, jedoch durch Null nicht definiert.
Für alle x, y, z ∈ ℚ gilt das Distributivgesetz:
1) x • (y + z) = x • y + x • z
2) x • (y - z) = x • y - x • z
Reelle Zahlen
In der Menge der reellen Zahlen gelten die Kommutativ-, Assoziativ- und Distributivgesetze. Weiterhin gelten auch die Wurzel- und Potenzgesetze.
Komplexe Zahlen
In den komplexen Zahlen gelten folgende Rechengesetze:
1) (x1 + i • y1) + (x2 + i • y2) = (x1 + x2) + i • (y1 + y2)
2) (x1 + i • y1) - (x2 + i • y2) = (x1 - x2) + i • (y1 - y2)
3) (x1 + i • y1) • (x2 + i • y2) = (x1x2 - y1y2) + i • (x1y2 + x2y1)
4) (x1 + i • y1) / (x2 + i • y2) = (x1x2 + y1y2) / (x2²+ y2²) + i • (x2y1 - x1y2) / (x2²+ y2²) (Division nur im Falle von x2 + i • y2 ≠ 0)
Zahlenbereiche im Mathematikunterricht
Systematischer Aufbau
Die folgende Abbildung zeigt in welchen Klassenstufen die verschiedenen Zahlenbereiche eingeführt werden. Dabei ist jedoch zu beachten, dass es zu Unterscheidungen in den Lehrplänen der verschiedenen Bundesländern kommen kann.