Übergang Mathematikunterricht - Mathematikstudium

Version vom 1. Dezember 2016, 13:55 Uhr von Wherget (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)


Madipedia-Logo-Ausrufezeichen.pngBitte Belege ergänzen!

[+Details][+Jetzt verbessern]
Der auf dieser Seite veröffentlichte Text ist nicht hinreichend durch Quellen belegt. Sie können uns helfen: Bitte ergänzen Sie im Text die notwendigen Belege und entfernen Sie dann diesen Hinweis. Sie können Ihre Änderungen auch auf der Diskussionsseite mit anderen Madipedia-Mitgliedern abstimmen.
Wenn Sie den Artikel direkt verbessern wollen, dann kommen Sie mit "Jetzt verbessern" direkt an die richtige Stelle. Hilfen zum Bearbeiten haben wir unter Hilfe bereitgestellt.

Der Übergang vom schulischen Mathematikunterricht in ein universitäres Mathematikstudium scheint für viele Studierende mit großen Herausforderungen einherzugehen, denn viele brechen ihr Studium schon zu Beginn ab (Dieter 2012). Diese Herausforderungen basieren nach theoretischen Überlegungen auf zwei grundlegenden Änderungen der mathematischen Lehr-Lern-Prozesse, (1) der Charakteristika des Lerngegenstands und der daraus resultierenden Anforderungen sowie (2) der Charakteristika der Lernumgebung.

Charakteristika des Lerngegenstands

Unterschiede im Lerngegenstand Mathematik zwischen Schule und Hochschule basieren auf unterschiedlichen Schwerpunktsetzungen der Ziele mathematischer Lehr-Lern-Prozesse. Während die Ziele schulischen Mathematikunterrichts auf dem Allgemeinbildungskonzept basieren, ist das grundlegende Ziel universitärer Lernprozesse der Einblick in die Wissenschaft Mathematik. Die Wissenschaft Mathematik zeichnet sich durch deduktive Beweisprozesse und abstrakte, formal definierte Begriffe aus (Roh 2008; Tall 2008).

Charakteristika der Lernumgebung

Die Lernumgebung ist durch das vorhandene Lernangebot und die Nutzung des Lernangebots gegeben. In theoretischen Arbeiten wird häufig die didaktisch unbefriedigende Qualität des universitären Lernangebots kritisiert (Bergsten 2007; Brandell, Hemmi & Thunberg 2008; Clark & Lovric 2009; Gueudet 2008). Aus diesem Grund scheint die Nutzung selbstregulativer und elaborativer Lernstrategien von Nöten zu sein (Artelt & Lompscher 1996; Wild 2005).

Unterstützungsmaßnahmen

Um die Studienanfängerinnen und Studienanfänger bei diesem Übergang zwischen zwei Bildungsinstitutionen zu unterstützen, gibt es schon seit einigen Jahrzehnten an zahlreichen Hochschulen Hilfsangebote (z. B. in Form von Brückenkursen und studienbegleitenden Tutorien). Diese Maßnahmen (z. T. mit Evaluation) sind in zahlreichen Sammelwerken zu finden (z. B. Ableitinger, Kramer & Prediger 2013; Beutelspacher, Danckwerts & Nickel 2010; Bausch et al. 2014; Zimmermann, Bescherer & Spannagel 2012).

Literatur

Ableitinger, C., Kramer, J. & Prediger, S. (2013). Zur doppelten Diskontinuität in der Gymnasiallehrerbildung: Ansätze zu Verknüpfungen der fachinhaltlichen Ausbildung mit schulischen Vorerfahrungen und Erfordernissen. Wiesbaden: Springer Fachmedien.

Artelt, C. & Lompscher, J. (1996). Lernstrategien und Studienprobleme bei Potsdamer Studierenden. In J. Lompscher & H. Mandl (Hrsg.), Lehr- und Lernprobleme im Studium. Bedingungen und Veränderungsmöglichkeiten (S. 161–184). Bern: Huber.

Bergsten, C. (2007). Investigating Quality of Undergraduate Mathematics Lectures. Mathematics Education Research Journal, 19(3), 48–72.

Beutelspacher, A., Danckwerts, R. & Nickel, G. (2010). Mathematik Neu Denken: Empfehlungen zur Neuorientierung der universitären Lehrerbildung im Fach Mathematik für das gymnasiale Lehramt. Heruntergeladen von https://dmv.mathematik.de/component/ docman/doc_download/240-dts-mathematik-neu-denken-2010.html am 05.03.2014.

Brandell, G., Hemmi, K. & Thunberg, H. (2008). The Widening Gap – A Swedish Perspettive. Mathematics Education Research Journal, 20(2), 38–56.

Bausch, I., Biehler, R., Bruder, R., Fischer, P. R., Hochmuth, R., Koepf, W., Schreiber S. & Wassong, T. (2014). Mathematische Vor- und Brückenkurse: Konzepte, Probleme und Perspektiven. Wiesbaden: Springer Fachmedien.

Clark, M. & Lovric, M. (2009). Understanding secondary-tertiary transition in mathematics. International Journal of Mathematical Education in Science and Technology, 40(6), 755–776.

Dieter, M. (2012). Studienabbruch und Studienfachwechsel in der Mathematik: Quantitative Bezifferung und empirische Untersuchung von Bedingungsfaktoren. Dissertation, Universität Duisburg-Essen. Heruntergeladen von http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-30759/ Dieter_Miriam.pdf am 05.03.2014.

Gueudet, G. (2008). Investigating the secondary-tertiary transition. Educational Studies in Mathematics, 67(3), 237–254.

Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics, 69(3), 217–233.

Tall, D. (2008). The Transition to Formal Thinking in Mathematics. Mathematics Education Research Journal, 20(2), 5–24.

Wild, K.-P. (2005). Individuelle Lernstrategien von Studierenden. Konsequenzen für die Hochschuldidaktik und die Hochschullehre. Beiträge zur Lehrerbildung, 23(2), 191–206.

Zimmermann, M., Bescherer, C. & Spannagel, C. (2012). Mathematik lehren in der Hochschule – Didaktische Innovationen für Vorkurse, Übungen und Vorlesungen. Hildesheim, Berlin: Franzbecker.