Vorstellungen von 0,99999...

Aus madipedia
Zur Navigation springen Zur Suche springen

Der Dezimalbruch 0,99999... mit der Eigenschaft 0,99999...=1 findet als Zahl keine explizite Erwähnung in den Lehrplänen respektive Rahmenrichtlinien der Schulen, verursacht aber häufig Konflikte in den Schülervorstellungen.

Beweise für 0,99999...=1

Rechnerische Verfahrenen [1]

Eine erste Variante der Behandlung der Zahl 0,99999... ist die Verwendung rechnerischer Verfahren, so kann zum Beispiel mit Hilfe der Bruchrechnung gezeigt werden, dass aus dem mathematische Zusammenhang 1/9 = 0,11111... = 0,11111... folgt: 1 = 1/9 *9 = 0,99999... = 0,99999...

Der Beweis durch Verwendung von Gleichungen ist wie folgt möglich: Es sei I x = 0,99999... (= 0,9 Periode 9) II 10x = 9,99999... II-I liefert dann 9x = 9,00000..., also x = 9/9 = 1. Mit I folgt dann (0,9 Periode 9) = 1.

Anschauliche Darstellung[2] (Bild einfügen!)

Der Zusammenhang kann auch anschaulich bewiesen werden. Man konstruiere einen Zahlenstrahl, der den Zahlenbereich von 0 bis 1 abbildet. Man kann dort leicht die Zahl 0,9 eintragen. Daraufhin vergrößern wir den Bereich zwischen 0,9 und 1. Nun lässt sich die Zahl 0,99 eintragen. Vergrößert man nun den Bereich zwischen 0,99 bis 1 so lässt sich wiederum die Zahl 0,999 eintragen. Man sieht, dass die Glieder der Folge 0,9; 0,99: 0,999; ... also immer näher an die 1 heranrücken. Verbindet man dies mit der Überlegung, wo (0,9 Periode 9) = 0,99999... liegen könnte , erhalten wir "anschaulich" (0,9 Periode 9) = 1.

Widerspruchsbeweis [3]

Man nehme an, dass (0,9 Periode 9) < 1 ist. Dann gibt es ein ε, das den Abstand von (0,9 Periode 9) zu 1 beschreibt. Zur Veranschaulichung sei nun ε = 0,000000001. Dann ist ε = 1 - (0,9 Periode 9) oder anders ausgedrückt ε + (0,9 Periode 9) = 1. Andererseits gilt aber I ε = 0,000.000.001 II (0,9 Periode 9) = 0,999.999.999.999...

Mit I+II folgt ε + (0,9 Periode 9) = 1,000.000.000.999 > 1, was einen Widerspruch zur Annahme bildet. Führt man nun diesen Beweis mit ε = 10^(-k) mit k aus den natürlichen Zahlen, erhält man einen Widerspruch zur Annahme für alle k aus den natürlichen Zahlen. Somit war die Annahme falsch. Da (0,9 Periode 9) > 1 ausgeschlossen werden kann, stellt man fest, dass (0.9 Periode 9) = 1 ist. Es gibt also kein Abstand ε zwischen 0,9 Periode 9) und 1, egal wie klein er gewählt wird.

Beweise mit unendlichen geometrischen Reihen [4]

Es ist möglich (0,9 Periode 9) als unendliche geometrische Reihe zu schreiben, also (0,9 Periode 9) = 0,99999... = 0,9 + 0,09 + 0,009 + ... = 0,9*1+ 0,9*(1/10) + 0,9*(1/100) + ... = Summe von n=0 bis ∞ mit 0,9*(1/10)^n. Aus der Analysis ist bekannt, dass für die Reihen Summe von n=0 bis ∞ mit a*q^n = a/(1-q) mit 0 < q < 1. Für unseren Fall gilt also mit a = 0,9 und q = 0,1: Summe von n=0 bis ∞ mit 0,9*(1/10)^n = 0,9 / (1 - 0,1) = 0,9 / 0,9 = 1.

  1. Studie von Bauer
  2. Studie von Bauer
  3. Studie von Bauer
  4. Analysis verständlich unterrichten