Gleichung

Aus Madipedia
Wechseln zu: Navigation, Suche


Madipedia-Logo-Ausrufezeichen.pngBitte Richtlinien beachten!

[+Details][+Jetzt verbessern]
Der auf dieser Seite veröffentlichte Text entspricht nicht vollständig den Madipedia:Richtlinien. Sie können uns helfen: Bitte passen Sie diese Abschnitte entsprechend an und entfernen Sie dann diesen Hinweis. Sie können Ihre Änderungen auch auf der Diskussionsseite mit anderen Madipedia-Mitgliedern abstimmen.
Wenn Sie den Artikel direkt verbessern wollen, dann kommen Sie mit "Jetzt verbessern" direkt an die richtige Stelle. Hilfen zum Bearbeiten haben wir unter Hilfe bereitgestellt.


Madipedia-Logo-Ausrufezeichen.pngBitte Eintrag vervollständigen!

[+Details][+Jetzt verbessern]
Der auf dieser Seite veröffentlichte Text ist unvollständig gemäß den Madipedia:Richtlinien. Sie können uns helfen: Bitte ergänzen Sie diese Abschnitte entsprechend und entfernen Sie dann diesen Hinweis. Sie können Ihre Änderungen auch auf der Diskussionsseite mit anderen Madipedia-Mitgliedern abstimmen.
Wenn Sie den Artikel direkt verbessern wollen, dann kommen Sie mit "Jetzt verbessern" direkt an die richtige Stelle. Hilfen zum Bearbeiten haben wir unter Hilfe bereitgestellt.


Madipedia-Logo-Ausrufezeichen.pngBitte Belege ergänzen!

[+Details][+Jetzt verbessern]
Der auf dieser Seite veröffentlichte Text ist nicht hinreichend durch Quellen belegt. Sie können uns helfen: Bitte ergänzen Sie im Text die notwendigen Belege und entfernen Sie dann diesen Hinweis. Sie können Ihre Änderungen auch auf der Diskussionsseite mit anderen Madipedia-Mitgliedern abstimmen.
Wenn Sie den Artikel direkt verbessern wollen, dann kommen Sie mit "Jetzt verbessern" direkt an die richtige Stelle. Hilfen zum Bearbeiten haben wir unter Hilfe bereitgestellt.


Klassifizierung der Gleichungen

In diesem Abschnitt werden die für die 5. bis 10. Klasse relevanten Typen von Gleichungen vorgestellt. Alle Gleichungen werden hierfür in der Normalform angegeben.

Seien dazu a,b,c,d beliebig, reell und a≠0 und sei x reell:

Lineare Gleichung

In einer Gleichung ersten Grades tritt die Unbekannte nur in der 1. Potenz auf. Allgemeine Form:

ax + b = 0 mit x ≠ 0

z.B. x + 1 = 0

Quadratische Gleichung

In einer Gleichung zweiten Grades ist Zwei die höchste auftretende Potenz der Unbekannten. Allgemeine Form:

ax² + bx + c = 0 mit x² ≠ 0

z.B. x² + x - 2 = 0

Kubische Gleichung

In einer Gleichung dritten Grades ist Drei die höchste auftretende Potenz der Unbekannten. Allgemeine Form:

ax³ + bx² + cx + d = 0 mit x³ ≠ 0

z.B. x³ - 2x² + x - 2 = 0

Bruchgleichung

Hier kommt die Unbekannte mindestens einmal im Nenner eines Bruches vor.

z.B. 3/x - 36 = 0 mit x ≠ 0


Lösungsstrategien

Äquivalente Umformungen einer Gleichung

Eine Äquivalenzumformung ist eine Umformung einer Gleichung, wobei die Gleichheit bestehen bleibt. Dazu führt man auf beiden Seiten dieselben Rechenoperationen mit gleichen Zahlen aus.

Eine Gleichung kann als Gleichgewichtszustand einer Waage gedeutet werden [1].

Grafisches Lösen von Gleichungen

Beim grafischen Lösen einer Gleichung mit einer Unbekannten muss jede Seite der Gleichung als Funktion dieser Unbekannten betrachtet werden. Die Lösungen der Gleichung kann man aus den x-Werten ihrer Schnittpunktkoordinaten ablesen. Gibt es keine Schnittpunkte, so ist die Gleichung nicht lösbar.


Gleichungssysteme und ihre Lösungsverfahren

Ein Gleichungssystem enthält mehrere Gleichungen mit mehreren Unbekannten. Hier werden nur die schulrelevanten linearen Gleichungssysteme und deren Lösungsstrategien betrachtet.

Gleichsetzungsverfahren

Mindestens zwei Gleichungen werden nach einer Unbekannten aufgelöst und einander gleichgesetzt.

Einsetzungsverfahren

Man löst eine der Gleichungen nach einer Unbekannten auf und setzt das Ergebnis in eine andere Gleichung ein.

Additionsverfahren

Hier werden Gleichungen addiert oder subtrahiert. Dazu werden zunächst mindestens zwei Gleichungen mit einer jeweils geeigneten Zahl so multipliziert, dass die Parameter einer Unbekannten in beiden Gleichungen betragsmäßig gleich werden. Im letzten Schritt wird durch Addition bzw. Subtraktion die Unbekannte eliminiert.

Didaktischer Kommentar

Grafisches Lösen von Gleichungen

Das grafische Lösen von Gleichungen ist eine hilfreiche Alternative zu den algebraischen Methoden. Es stärkt die Fähigkeit Gleichungen mit dem Funktionsbegriff zu verbinden und mit Hilfe von Schaubildern der Funktionen die Lösbarkeit bzw. Nicht-Lösbarkeit von Gleichungen geometrisch zu begründen.

Technische Hilfsmittel, wie z.B. Dynamische Geometrieprogramme, CAS-Rechner und grafikfähige Taschenrechner bieten mit den grafischen Lösungsverfahren oft eine zeitsparende Variante zu den algebraischen Lösungsmethoden.

Eine weitere meist im Unterricht eingesetzte Methode des grafischen Lösens von Gleichungen ist das Arbeiten mit der Normalform. Dies ist ein Spezialfall des oben beschriebenen allgemeinen Verfahrens. Dazu formt man die Gleichung des jeweiligen Grades (1) in die Normalform um (2) und betrachtet diese als Funktion der Unbekannten des jeweiligen Grades (3).


Beispiel: Für eine Gleichung 2. Grades betrachte die Funktion:

 (1) ax²+bx=d mit a≠0 
 (2) ax²+bx-d=0 
 (3) y=ax²+bx-d

Der Schnittpunkt der Funktion mit der x-Achse ist dann die gesuchte Lösung der gegebenen Gleichung.

Zum Einzeichnen eines Funktionsgraphen in ein Koordinatensystem ist auch das Erstellen einer Wertetabelle hilfreich.

Literatur

  • Beutelspacher, A. (2011): Survival-Kit Mathematik: Mathe-Basics zum Studienbeginn. Vieweg+Teubner Verlag.
  • Beschlüsse der Kultusministerkonferenz (2004): Bildungsstandards im Fach Mathematik für den Hauptschulabschluss [2]
  • Gellert, W., Küstner H. (Hrsg.) (1972): Kleine Enzyklopädie Mathematik. Deutsch Harri GmbH.

Weblinks