Um die Problematik der springenden Punkte zu vermeiden, muss die Vorgeschichte der Konstruktion in den Lösungsalgorithmus miteinbezogen werden. Das bedeutet, dass die Position der freien Punkte vor der Verschiebung im Zugmodus berücksichtigt werden muss. Durch die Verwendung von komplexen Zahlen können verschwindende Schnitte (wie im obigen Beispiel beschrieben) besser durch das Programm behandelt werden. Eine weitere Hürde ist die Behandlung von [[Singularität|Singularitäten]], die besonders bei Berechnungen von Mehrfachlösungen auftreten.
+
Um die Problematik der springenden Punkte zu vermeiden, muss die Vorgeschichte der Konstruktion in den Lösungsalgorithmus miteinbezogen werden. Das bedeutet, dass die Position der freien Punkte vor der Verschiebung im Zugmodus berücksichtigt werden muss. Durch die Verwendung von komplexen Zahlen können verschwindende Schnitte (wie im obigen Beispiel beschrieben) besser durch das Programm behandelt werden. Eine weitere Hürde ist die Behandlung von [[Singularität|Singularitäten]], die besonders bei Berechnungen von Mehrfachlösungen auftreten. Diese Situation tritt beispielsweise auf, wenn eine Gerade durch einen Kreis an die Tangentialposition und wieder zurück bewegt wird.
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.