Änderungen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
Zeile 4: Zeile 4:     
== Genese ==
 
== Genese ==
Die heute übliche Bezeichnung [[Funktion:_mengentheoretische_Auffassung#Funktionsgraph|„Funktionsgraph"]] entstand erst im Zusammenhang mit der mengentheoretisch begründeten strukturtheoretischen Mathematik etwa in der Mitte des 20. Jahrhunderts, und zwar dann in der Definition gemäß <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>. Andererseits zeigt sich in diesem Kontext der Definition von einer „Funktion als einer rechtseindeutigen Relation“, dass <math>f=\{(x,f(x))|x\in A\}</math> gilt, woraus kurioserweise <math>f={{\operatorname{G}}_{f}}</math> folgt: Eine Funktion (im mengentheoretischen Verständnis) und ihr Graph sind also dasselbe. <ref>Siehe hierzu „[[Funktion: mengentheoretische Auffassung]]“.</ref> Hierauf wies bereits 1960 [http://www-history.mcs.st-and.ac.uk/Biographies/Dieudonne.html Jean Dieudonné] (1906 – 1992) hin: <ref>Zitiert in [Hischer 2016, 237].</ref>
+
Die heute übliche Bezeichnung [[Funktion:_mengentheoretische_Auffassung#Funktionsgraph_2|„Funktionsgraph"]] entstand erst im Zusammenhang mit der mengentheoretisch begründeten strukturtheoretischen Mathematik etwa in der Mitte des 20. Jahrhunderts, und zwar dann in der Definition gemäß <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>. Andererseits zeigt sich in diesem Kontext der Definition von einer „Funktion als einer rechtseindeutigen Relation“, dass <math>f=\{(x,f(x))|x\in A\}</math> gilt, woraus kurioserweise <math>f={{\operatorname{G}}_{f}}</math> folgt: Eine Funktion (im mengentheoretischen Verständnis) und ihr Graph sind also dasselbe. <ref>Siehe hierzu „[[Funktion: mengentheoretische Auffassung]]“.</ref> Hierauf wies bereits 1960 [http://www-history.mcs.st-and.ac.uk/Biographies/Dieudonne.html Jean Dieudonné] (1906 – 1992) hin: <ref>Zitiert in [Hischer 2016, 237].</ref>
 
::It is customary, in the language, to talk of a mapping and a functional graph as if they were two kinds of objects in one-to-one correspondence, and to speak therefore of “the graph of a mapping”, but this is a mere psychological distinction (corresponding to whether one looks on  F  either “geometrically” or “analytically”).<br />
 
::It is customary, in the language, to talk of a mapping and a functional graph as if they were two kinds of objects in one-to-one correspondence, and to speak therefore of “the graph of a mapping”, but this is a mere psychological distinction (corresponding to whether one looks on  F  either “geometrically” or “analytically”).<br />
 
Ein ''Graph'' einer reellen (einstelligen) Funktion ist also (als Menge von Zahlenpaaren) nur die „Vorstellung“ dieser Funktion, und diese Vorstellung wird durch ein Schaubild „dargestellt“, wobei diese Darstellung (also das „Schaubild“) z. B. eine Skizze, eine sorgfältige händische Zeichnung oder aktuell auch ein [[Funktionsplot]] sein kann.<br />  
 
Ein ''Graph'' einer reellen (einstelligen) Funktion ist also (als Menge von Zahlenpaaren) nur die „Vorstellung“ dieser Funktion, und diese Vorstellung wird durch ein Schaubild „dargestellt“, wobei diese Darstellung (also das „Schaubild“) z. B. eine Skizze, eine sorgfältige händische Zeichnung oder aktuell auch ein [[Funktionsplot]] sein kann.<br />  
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü