Zeile 18:
Zeile 18:
===Publikationen zum Thema "Beweisen und Argumentieren"===
===Publikationen zum Thema "Beweisen und Argumentieren"===
−
* Zur Genese des indirekten Beweises. In: Böttinger, C., Bräuning, K., Nührenbörger, M., Schwarzkopf, R. & Söbbeke, E. (Hrsg.), Mathematik im Denken der Kinder. Anregungen zur mathematikdidaktischen Reflexion, Seelze: Klett Kallmeyer 2010, 41 - 47
+
* Zur Genese des indirekten Beweises. In: Böttinger, C., Bräuning, K., Nührenbörger, M., Schwarzkopf, R. & [[Elke Söbbeke|Söbbeke, E.]] (Hrsg.), Mathematik im Denken der Kinder. Anregungen zur mathematikdidaktischen Reflexion, Seelze: Klett Kallmeyer 2010, 41 - 47
−
* The Conjoint Origin of Proof and Theoretical Physics. In: Hanna, G., Jahnke, H. N. & Pulte, H (ed.) Explanation and Proof in Mathematics. Philosophical and Educational Perspectives, New York et al.:Springer 2009, 17-32
+
* The Conjoint Origin of Proof and Theoretical Physics. In: Hanna, G., Jahnke, H. N. & Pulte, H (ed.) Explanation and Proof in Mathematics. Philosophical and Educational Perspectives, New York et al.: Springer 2009, 17-32
−
* Explanation and Proof in Mathematics. Philosophical and Educational Perspectives, New York et al.:Springer 2009 (Ed. with Gila Hanna & Helmut Pulte)
+
* Explanation and Proof in Mathematics. Philosophical and Educational Perspectives, New York et al.: Springer 2009 (Ed. with Gila Hanna & Helmut Pulte)
* Hypothesen und ihre Konsequenzen. Ein anderer Blick auf die Winkelsummensätze. Praxis der Mathematik für die Schule 51, H. 30, Dezember 2009, 26 – 30
* Hypothesen und ihre Konsequenzen. Ein anderer Blick auf die Winkelsummensätze. Praxis der Mathematik für die Schule 51, H. 30, Dezember 2009, 26 – 30
−
* Proof and the empirical sciences. In: Fou-Lai Lin, Feng-Jui Hsieh, Gila Hanna & Michael de Villiers (ed.), Proof and proving in mathematics education. ICMI Study 19 Conference Proceedings, Taipei: Department of Mathematics, National Taiwan Normal University 2009, vol. 1, 238-243
+
* Proof and the empirical sciences. In: Fou-Lai Lin, Feng-Jui Hsieh, Gila Hanna & Michael de Villiers (ed.), Proof and proving in mathematics education. [[ICMI]] Study 19 Conference Proceedings, Taipei: Department of Mathematics, National Taiwan Normal University 2009, vol. 1, 238-243
−
* Theorems that admit exceptions, including a remark on Toulmin. [[ZDM]] -The International Journal on Mathematics Education (2008),.40(3), 363-371
+
* Theorems that admit exceptions, including a remark on Toulmin. [[ZDM|ZDM -The International Journal on Mathematics Education]] (2008),.40(3), 363-371
* Beweisen und hypothetisch-deduktives Denken. Der Mathematikunterricht 53 (2007), H. 5, 10-21
* Beweisen und hypothetisch-deduktives Denken. Der Mathematikunterricht 53 (2007), H. 5, 10-21
−
* Proving and Modelling. In: W. Blum, P. L. Galbraith, H.-W. Henn & m. Niss (Hrsg.), ICMI Study 14: Applications and Modelling in Mathematics Education, The 14th ICMI Study, Springer 2007, 145 – 152 (m. G. Hanna)
+
* Proving and Modelling. In: [[Werner Blum|W. Blum]], P. L. Galbraith, [[Hans-Wolfgang Henn|H.-W. Henn]] & M. Niss (Hrsg.), ICMI Study 14: Applications and Modelling in Mathematics Education, The 14th ICMI Study, Springer 2007, 145 – 152 (m. G. Hanna)
* Proofs and Hypotheses. ZDM—The International Journal on Mathematics Education (2007), 39(1–2), 79–86.
* Proofs and Hypotheses. ZDM—The International Journal on Mathematics Education (2007), 39(1–2), 79–86.
−
* A genetic approach to proof. In: Bosch, M. (ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education, Sant Feliu de Guíxols 2005, S. 428 – 437
+
* A genetic approach to proof. In: [[Marianne Bosch|Bosch, M.]] (ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education, Sant Feliu de Guíxols 2005, S. 428 – 437
−
* Proving and Modelling. H.-W. Henn & W. Blum (Hrsg.), ICMI Study 14: Applications and Modelling in Mathematics Education, Pre-Conference Volume, Dortmund 2004, 109 – 114 (m. G. Hanna)
+
* Proving and Modelling. H.-W. Henn & [[Werner Blum|W. Blum]] (Hrsg.), ICMI Study 14: Applications and Modelling in Mathematics Education, Pre-Conference Volume, Dortmund 2004, 109 – 114 (m. G. Hanna)
* Using ideas from physics in teaching mathematical proofs. In: Ye, Qi-Xiao; Blum, W.; Houston, S.K. & Jiang, Qi-Yuang (ed.), Mathematical Modelling in Education and Culture: ICTMA 10, Westergate: Horwood Publishing, 31-40, (mit G. Hanna)
* Using ideas from physics in teaching mathematical proofs. In: Ye, Qi-Xiao; Blum, W.; Houston, S.K. & Jiang, Qi-Yuang (ed.), Mathematical Modelling in Education and Culture: ICTMA 10, Westergate: Horwood Publishing, 31-40, (mit G. Hanna)
* Arguments from Physics in Mathematical Proofs: an Educational Perspective, For the Learning of Mathematics 22 (2002), 38-45 (mit Gila Hanna)
* Arguments from Physics in Mathematical Proofs: an Educational Perspective, For the Learning of Mathematics 22 (2002), 38-45 (mit Gila Hanna)
* The Teaching of Proof. In: LI Tsatsien (Hrsg.), Proceedings of the International Congress of Mathematicians, Beijing 2002, August 20-28, Vol. III: Invited Lectures, 907 – 920 (mit Deborah Loewenberg Ball, Celia Hoyles, Nitsa Movshovitz-Hadar)
* The Teaching of Proof. In: LI Tsatsien (Hrsg.), Proceedings of the International Congress of Mathematicians, Beijing 2002, August 20-28, Vol. III: Invited Lectures, 907 – 920 (mit Deborah Loewenberg Ball, Celia Hoyles, Nitsa Movshovitz-Hadar)
−
* Another Approach to Proof. Zentralblatt für Didaktik der Mathematik 34 (2002), Heft 1, 1 – 8 (mit G. Hanna)
+
* Another Approach to Proof. [[Zentralblatt für Didaktik der Mathematik]] 34 (2002), Heft 1, 1 – 8 (mit G. Hanna)
* Teaching Mathematical Proofs that Rely on Ideas from Physics. Canadian Journal of Science, Mathematics and Technology Education 1 (2001), Heft 2, 183 - 192 (mit Gila Hanna, Ysbrand DeBruyn und Dennis Lomas)
* Teaching Mathematical Proofs that Rely on Ideas from Physics. Canadian Journal of Science, Mathematics and Technology Education 1 (2001), Heft 2, 183 - 192 (mit Gila Hanna, Ysbrand DeBruyn und Dennis Lomas)
* Using arguments from physics to promote understanding of mathematical proofs. In: Orit Zaslavsky (Hrsg.), Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Education, Haifa 1999, vol. 3, 73-80 (mit G. Hanna)
* Using arguments from physics to promote understanding of mathematical proofs. In: Orit Zaslavsky (Hrsg.), Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Education, Haifa 1999, vol. 3, 73-80 (mit G. Hanna)
Zeile 43:
Zeile 43:
* Rezension: Gila Hanna, Rigorous proof in mathematics education. Zentralblatt für Didaktik der Mathematik 5 (1984), 168-171
* Rezension: Gila Hanna, Rigorous proof in mathematics education. Zentralblatt für Didaktik der Mathematik 5 (1984), 168-171
* Anschauung und Begründung in der Schulmathematik. In: Beiträge zum Mathematikunterricht (1984), Bad Salzdetfurth, 32-41
* Anschauung und Begründung in der Schulmathematik. In: Beiträge zum Mathematikunterricht (1984), Bad Salzdetfurth, 32-41
−
* Der Zusammenhang von Verallgemeinerung und Gegenstandsbezug beim Beweisen - Am Beispiel der Geometrie diskutiert. In: W. Dörfler/R. Fischer (Hrsg.): Beweisen im Mathematikunterricht, Klagenfurt 1978, 225-242 (mit M. Otte)
+
* Der Zusammenhang von Verallgemeinerung und Gegenstandsbezug beim Beweisen - Am Beispiel der Geometrie diskutiert. In: W. Dörfler/R. Fischer (Hrsg.): Beweisen im Mathematikunterricht, Klagenfurt 1978, 225-242 (mit [[Michael Otte|M. Otte]])
* Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik - Beweisen als didaktisches Problem. Materialien und Studien des IDM, Bd.10, Bielefeld 1978
* Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik - Beweisen als didaktisches Problem. Materialien und Studien des IDM, Bd.10, Bielefeld 1978