Baustelle:Relation: Unterschied zwischen den Versionen
| Zeile 5: | Zeile 5: | ||
Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen. | Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen. | ||
==Definitionen== | ==Definitionen== | ||
| + | ===Grundlegende Definitionen=== | ||
Der formalmathematischen Definition von „Relation liegt“ das „geordnete Paar“ zugrunde, etwa mit <math>(a,b)</math> bezeichnet, wobei es im Gegensatz zur mit <math>\{a,b\}</math> bezeichneten Menge auf die Reihenfolge der beiden „Elemente“ ankommt. In diesem Sinne kann man die Darstellung <math>(a,b)</math> als unmittelbar einsichtig im Sinne eines undefinierten Grundbegriffs verwenden, aber dem polnischen Mathematiker [http://de.wikipedia.org/wiki/Kazimierz_Kuratowski Kazimierz '''Kuratowski''']) gelang es 1921, das „geordnete Paar“ mengentheoretisch zu definieren. Dieser formale Aufbau wird kurz angedeutet: | Der formalmathematischen Definition von „Relation liegt“ das „geordnete Paar“ zugrunde, etwa mit <math>(a,b)</math> bezeichnet, wobei es im Gegensatz zur mit <math>\{a,b\}</math> bezeichneten Menge auf die Reihenfolge der beiden „Elemente“ ankommt. In diesem Sinne kann man die Darstellung <math>(a,b)</math> als unmittelbar einsichtig im Sinne eines undefinierten Grundbegriffs verwenden, aber dem polnischen Mathematiker [http://de.wikipedia.org/wiki/Kazimierz_Kuratowski Kazimierz '''Kuratowski''']) gelang es 1921, das „geordnete Paar“ mengentheoretisch zu definieren. Dieser formale Aufbau wird kurz angedeutet: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! Definitionen !! Anmerkungen | ! Definitionen !! Anmerkungen | ||
| + | |- | ||
| + | | ''Voraussetzung:'' Es seien <math>A,B,R</math> Mengen und <math>n\in {{\mathbb{N}}^{*}}\text{ }\!\!\backslash\!\!\text{ }\{1\}</math> (also <math>n>1</math>). || | ||
|- | |- | ||
| Für beliebige Objekte <math>a, b</math> gilt:: | | Für beliebige Objekte <math>a, b</math> gilt:: | ||
| Zeile 15: | Zeile 18: | ||
<math>(a,b)</math> lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.<br />Spezielle Namen sind für <math>n=3</math> „'''Tripel'''“ und für <math>n=4</math> „'''Quadrupel'''“. | <math>(a,b)</math> lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.<br />Spezielle Namen sind für <math>n=3</math> „'''Tripel'''“ und für <math>n=4</math> „'''Quadrupel'''“. | ||
|- | |- | ||
| − | | | + | | : <math>A\times B:=\{(a,b)|a\in A\wedge b\in B\}</math> || <math>A\times B</math> heißt „'''Produktmenge'''“ oder „'''kartesisches Produkt'''“ (von <math>A</math> und <math>B</math>).<br /> |
<math>A\times B</math> lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern. | <math>A\times B</math> lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern. | ||
|- | |- | ||
| − | | | + | | <math>R</math> ist genau dann eine '''<math>n</math>-stellige Relation''', wenn <math>R</math> nur aus geordneten <math>n</math>-Tupeln besteht. || 2-stellige Relationen heißen auch „'''binäre''' Relationen“, sie bestehen damit nur aus geordneten Paaren. |
| + | |- | ||
| + | | <math>R</math> ist genau dann eine Relation '''von <math>A</math> nach <math>R</math>''', wenn <math> R\,\subseteq \,A\,\times \,B</math> gilt. | ||
| + | || Die geometrische Beziehung ''„Punkt liegt auf Gerade“'' ist eine Relation von einer Punktmenge '''nach''' einer Geradenmenge. | ||
| + | |- | ||
| + | | <math>R</math> ist genau dann eine Relation '''in <math>A</math>''', wenn <math> R\,\subseteq \,A\,\times \,A</math> gilt. || Die ''„Größer-als-Beziehung“'' ist eine Relation '''in''' einer Menge von Zahlen. | ||
| + | |} | ||
| + | Für binäre Relationen wird folgende '''Schreibweise''' vereinbart:: <math>xRy:\Leftrightarrow (x,y)\in R</math> | ||
| + | ===Spezielle Relationseigenschaften und spezielle Relationen <small><small><ref>Erläuterungen und Veranschaulichungen dazu in [Hischer 2012, 181 ff.]</ref></small></small>=== | ||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | ! Definitionen !! Anmerkungen | ||
| + | |- | ||
| + | | ''Voraussetzung:'' <math>A,B,R</math> seien Mengen, <math>R\ne \varnothing</math> und <math>R\subseteq M\times M</math>. || Beispiel | ||
| + | |- | ||
| + | | <math>R</math> ist '''symmetrisch''' <math>:\Leftrightarrow</math> Es gilt für alle <math> x,y:</math> wenn <math>xRy</math> dann <math>yRx</math> || Beispiel | ||
| + | |- | ||
| + | | <math>R</math> ist '''asymmetrisch''' <math>:\Leftrightarrow</math> Es gilt für alle <math> x,y:</math> wenn <math>xRy</math> dann '''nicht''' <math>yRx</math> ) || Beispiel | ||
| + | |- | ||
| + | | <math>R</math> ist '''identitiv''' <math>:\Leftrightarrow</math> Es gilt für alle <math> x,y:</math> wenn <math>xRy</math> und <math>yRx</math> dann <math>x=y</math> || Beispiel | ||
| + | |- | ||
| + | | <math>R</math> ist '''transitiv''' <math>:\Leftrightarrow</math> Es gilt für alle <math> x,y,z:</math> wenn <math>xRy</math> und <math>yRz</math> dann <math>xRz</math> || Beispiel | ||
| + | |- | ||
| + | | Beispiel || Beispiel | ||
|- | |- | ||
| Beispiel || Beispiel | | Beispiel || Beispiel | ||
Version vom 20. August 2013, 16:25 Uhr
Übersicht [1]
Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob zu „gehört“ bzw. ob und wie zu „in Beziehung steht“, falls etwa und gilt. Eine solche Relation kann z. B. durch eine Gleichung wie oder eine Ungleichung wie beschrieben werden
Sofort ist ersichtlich, dass eine konkrete, etwa mit
bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare aus der „Produktmenge“ gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge als „Relation zwischen und “ – oder genauer: als „Relation von nach “ – aufzufassen.
Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in anstelle von und beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen.
Definitionen
Grundlegende Definitionen
Der formalmathematischen Definition von „Relation liegt“ das „geordnete Paar“ zugrunde, etwa mit bezeichnet, wobei es im Gegensatz zur mit bezeichneten Menge auf die Reihenfolge der beiden „Elemente“ ankommt. In diesem Sinne kann man die Darstellung als unmittelbar einsichtig im Sinne eines undefinierten Grundbegriffs verwenden, aber dem polnischen Mathematiker Kazimierz Kuratowski) gelang es 1921, das „geordnete Paar“ mengentheoretisch zu definieren. Dieser formale Aufbau wird kurz angedeutet:
| Definitionen | Anmerkungen |
|---|---|
| Voraussetzung: Es seien Mengen und (also ). | |
Für beliebige Objekte gilt::
|| heißt „geordnetes Paar“. Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass gilt. | |
| : | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A\times B}
heißt „Produktmenge“ oder „kartesisches Produkt“ (von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A}
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B}
). Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A\times B} lässt sich rekursiv zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}} verallgemeinern. |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} ist genau dann eine -stellige Relation, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} nur aus geordneten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle n} -Tupeln besteht. | 2-stellige Relationen heißen auch „binäre Relationen“, sie bestehen damit nur aus geordneten Paaren. |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} ist genau dann eine Relation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A} nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} , wenn gilt. | Die geometrische Beziehung „Punkt liegt auf Gerade“ ist eine Relation von einer Punktmenge nach einer Geradenmenge. |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} ist genau dann eine Relation in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A} , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R\,\subseteq \,A\,\times \,A} gilt. | Die „Größer-als-Beziehung“ ist eine Relation in einer Menge von Zahlen. |
Für binäre Relationen wird folgende Schreibweise vereinbart:: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy:\Leftrightarrow (x,y)\in R}
Spezielle Relationseigenschaften und spezielle Relationen [2]
| Definitionen | Anmerkungen |
|---|---|
| Voraussetzung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A,B,R} seien Mengen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R\ne \varnothing} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R\subseteq M\times M} . | Beispiel |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} ist symmetrisch Es gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y:} wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy} dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRx} | Beispiel |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} ist asymmetrisch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y:} wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy} dann nicht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRx} ) | Beispiel |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} ist identitiv Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y:} wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRx} dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x=y} | Beispiel |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle R} ist transitiv Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle :\Leftrightarrow} Es gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x,y,z:} wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRy} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle yRz} dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle xRz} | Beispiel |
| Beispiel | Beispiel |
| Beispiel | Beispiel |
| Beispiel | Beispiel |
| Beispiel | Beispiel |
Literatur
- Hischer, Horst [2012]: Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung. Struktur – Funktion – Zahl. Wiesbaden: Springer Spektrum.