Übersicht

  • Streng genommen ist zwischen „Funktionsgraph“ (als Menge geordneter Paare) und der visualisierenden Darstellung durch ein „Schaubild“ zu unterscheiden:

Definition:

Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f} eine Funktion von der Argumentmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A} in die Zielmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B} , kurz: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f\,:A\to B} .
Dann ist der Funktionsgraph von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f} durch   definiert.

Der Funktionsgraph einer (einstelligen) Funktion [math]f[/math] von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B} besteht also aus allen geordneten Paaren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (x,f(x))} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x\in A} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)\in B} .
(Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle A} die Definitionsmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f} , die kurz mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {{\operatorname{D}}_{f}}} bezeichnet wird. Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich sie aber in den meisten unterrichtsrelevanten Fällen üblich ist.)

Visualisierung von Funktionsgraphen

  • Funktionsgraphen lassen sich z. B. in einem kartesischen Koordinatensystem visualisieren, indem die geordneten Paare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (x,f(x))} durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x} (nach rechts auf der Rechtsachse bzw. der 1. Koordinatenachse) und der „Ordinate“ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f(x)} (nach oben auf der Hochachse bzw. der 2. Koordinatenachse) abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert.
  • Anstelle eines kartesischen Koordinatensystems sind auch andere zweidimensionale Koordinatensysteme möglich, z. B. Polarkoordinatensysteme. Und auch dreidimensionale Koordinatensysteme (z. B. für kartesische Koordinaten, Zylinderkoordinaten, Kugelkoordinaten) können einer Visualisierung dienen, so etwa von Raumkurven oder Flächen.)
  • Solche Visualisierungen können insbesondere zeichnerisch (von Hand als Skizze oder mit Hilfe von Zeicheninstrumenten) oder mit Hilfe von Funktionenplottern erfolgen. Die dabei erzeugten Zeichnungen oder Funktionsplots sind aber nur Darstellungen eines gegebenen Funktionsgraphen und nicht mit diesem identisch. Jede solche visualisierende Darstellung ist ein Schaubild des Funktionsgraphen und also solche nur eine Simulation des Graphen bzw. der Funktion. Solche Schaubilder sind ikonische Repräsentationen einer Funktion.
  • Ein (formaler) Funktionsgraph wird also durch ein (konkretes) Schaubild visualisiert und ist von diesem zu unterscheiden.
  • Einem konkreten Funktionsgraphen kann man verschiedene Schaubilder zuordnen.
  • Legt man die mengentheoretische Identität einer Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f} gemäß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle f=\{(x,f(x))|x\in A\}} zugrunde, so folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle {{\operatorname{G}}_{f}}=f} . [1]

Beispiele

 
Schaubild einer abstrakten diskreten Funktion
 
Schaubild einer abstrakten diskreten Funktion
 
Schaubild einer abstrakten diskreten Funktion


Forschungsumfeld

Genese

Fachdidaktische Diskussion

Literatur

Wenn dieser Artikel aus dem Baustellen-Namensraum in den normalen Namensraum verschoben wird, dann erhält er einen Zitierhinweis ähnlich zu diesem:
Madipedia (2016): Baustelle:Funktionsgraph neu. Version vom 12.06.2016. In: madipedia. URL: http://madipedia.de/index.php?title=Baustelle:Funktionsgraph_neu&oldid=24609.
  1. Vgl. hierzu Dieudonné.