Änderungen

K
Zeile 48: Zeile 48:  
Von dieser Funktion suchen wir jetzt das Minimum. Dass es ein solches gibt, zeigt uns wiederum der Plotter des CAS. An dieser Stelle ist es aber empfehlenswert, die Funktionsgleichung <math> M(a) </math> qualitativ analytisch zu diskutieren. Man erkennt, dass für große und für kleine <math> a\ M(a) </math> groß wird, was bedeutet, dass das gesuchte Minimum irgendwo in der Mitte liegen muss. Jetzt wird man noch eine Monotoniebetrachtung durchführen und das Monotoniekriterium benutzen. Dies sichert die Existenz eines eindeutig bestimmten Minimums.  
 
Von dieser Funktion suchen wir jetzt das Minimum. Dass es ein solches gibt, zeigt uns wiederum der Plotter des CAS. An dieser Stelle ist es aber empfehlenswert, die Funktionsgleichung <math> M(a) </math> qualitativ analytisch zu diskutieren. Man erkennt, dass für große und für kleine <math> a\ M(a) </math> groß wird, was bedeutet, dass das gesuchte Minimum irgendwo in der Mitte liegen muss. Jetzt wird man noch eine Monotoniebetrachtung durchführen und das Monotoniekriterium benutzen. Dies sichert die Existenz eines eindeutig bestimmten Minimums.  
   −
Hier sei explizit darauf hingewiesen, dass <math> M(a) </math> eine Gleichung vierten Grades ist und von den Schülern nicht gelöst werden kann. Die Nutzung des CAS zur algebraischen Lösung ist aber auch nur bedingt geeignet, da die komplizierten algebraischen Wurzelterme erschrecken und sinnvoll interpretiert werden müssen. Es bietet sich die numerische Lösung des Rechners für das gesuchte Minumum an.  
+
Hier sei explizit darauf hingewiesen, dass <math> M'(a)=0 </math> eine Gleichung vierten Grades ist und von den Schülern nicht gelöst werden kann. Die Nutzung des CAS zur algebraischen Lösung ist aber auch nur bedingt geeignet, da die komplizierten algebraischen Wurzelterme erschrecken und sinnvoll interpretiert werden müssen. Es bietet sich die numerische Lösung des Rechners für das gesuchte Minumum an.  
    
Das Ergebnis <math> a=7,8 cm </math> weicht stark vom realen Wert <math> a= 7,1 cm </math> ab. Dies kann nun weiterführend interpretiert werden.
 
Das Ergebnis <math> a=7,8 cm </math> weicht stark vom realen Wert <math> a= 7,1 cm </math> ab. Dies kann nun weiterführend interpretiert werden.
88

Bearbeitungen