Änderungen

K
Neue Publikationen
Zeile 43: Zeile 43:  
* '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.
 
* '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.
 
* '''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
 
* '''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
 +
 +
====Gleichungssysteme====
 +
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Gleichungsysteme.html
 +
* '''Zwei lineare Zuordnungen kreuzen sich'''. Im Lernvideo wird das Problem, wie man die Koordinaten eines Geradenschnittpunktes aus zwei linearen Gleichungen bestimmen kann, in GeoGebra entwickelt und durch eine Aufgabe konkretisiert. Die rechnerische Lösung der Aufgabe steht dabei im Mittelpunkt der Illustrationen. Der Ansatz zur Gleichsetzung der beiden „y-Terme“ wird in einer Analyse zur Aufgabe anschaulich begründet und durch Äquivalenzumformgen an einer linearen Gleichung mit nur einer Variablen zur Lösung verwandelt. Die rechnerische Probe an zwei linearen Gleichungen mit zwei Variablen zeigt die Übereinstimmung der beiden „y-Werte“.
 +
* '''LGS (2x2) graphisch lösen'''. Im Lernvideo wird gezeigt, wie man in 5 Schritten die Standardaufgabe: „Löse ein lineares Gleichungssystem vom Typ (2 kreuz 2) auf graphischen Wege“ erfüllen kann. Ein dynamisches GeoGebra-Arbeitsblatt unterstützt die Kontrolle der Schritte 1 bis 4 durch entsprechende Interaktivität.  Die Handhabung des GeoGebra-Arbeitsblattes wird ausführlich demonstriert.
    
====Konstruieren | Messen | Berechnen====
 
====Konstruieren | Messen | Berechnen====
447

Bearbeitungen