Änderungen

Zur Navigation springen Zur Suche springen
Zeile 63: Zeile 63:  
* '''Konstruktion: Dreieck'''. Im Lernvideo wird das Konstruieren (Zirkel, Lineal und Geodreieck) eines Dreiecks vorgestellt. Die Lösung führt zu zwei nicht deckungsgleichen Dreiecken. Schwerpunkt des Lernvideos ist die Entwicklung der Lösung mittels einer Analyse von Schnittmengen aus Ortslinien. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
 
* '''Konstruktion: Dreieck'''. Im Lernvideo wird das Konstruieren (Zirkel, Lineal und Geodreieck) eines Dreiecks vorgestellt. Die Lösung führt zu zwei nicht deckungsgleichen Dreiecken. Schwerpunkt des Lernvideos ist die Entwicklung der Lösung mittels einer Analyse von Schnittmengen aus Ortslinien. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
 
* '''Konstruktion: gleichschenkliges Dreieck'''. Im Lernvideo wird das Konstruieren (Zirkel und Lineal) eines gleichschenkligen Dreiecks vorgestellt. Die Eigenschaften des gleichschenkligen Dreiecks werden exemplarisch herausgearbeitet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
 
* '''Konstruktion: gleichschenkliges Dreieck'''. Im Lernvideo wird das Konstruieren (Zirkel und Lineal) eines gleichschenkligen Dreiecks vorgestellt. Die Eigenschaften des gleichschenkligen Dreiecks werden exemplarisch herausgearbeitet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
 +
* '''Winkel verschieben und drehen'''. Im Lernvideo werden Nebenwinkel, Scheitelwinkel, Stufenwinkel und Wechselwinkel exemplarisch eingeführt. Beziehungen von Stufenwinkel bzw. Wechselwinkel werden an parallelen Geraden untersucht und entsprechende Sätze formuliert. Auch eine Umkehrung zum Stufen- und Wechselwinkelsatz wird genannt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
 +
* '''Entdecke einen geometrischen Satz'''. In diesem Anleitungsvideo wird den Schülerinnen und Schülern gezeigt, wie sie ein GeoGebra-Arbeitsblatt nutzen können, um eine Vermutung über die Lage eines Punktes C zu formulieren. Der Punkt C soll ein Eckpunkt eines rechtwinkligen Dreiecks ABC sein.
 +
* '''Beweis Satz des Thales'''. Im Lernvideo wird der Satz des Thales mithilfe von drei Werkzeugen in Form mathematischer Sätze schrittweise bewiesen. Wesentliche Überlegungen werden durch Dynamisierungen in GeoGebra illustriert.
 +
* '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.
 +
* '''Kreistangente'''. Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert. Es werden die drei Fragen: 1. Was ist eine Kreistangente? 2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt? 3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt? beantwortet und begründet. Am Ende des LV werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen. Hierzu wird von mir die Mathematiksoftware GeoGebra genutzt.
 +
* '''Satz über die Innenwinkelsumme im Dreieck (Viereck)'''. Im Lernvideo wird der Satz über die Innenwinkelsumme im Dreieck formuliert. Der Beweis wird in einem GeoGebra-Arbeitsblatt illustriert und angeleitet. Zu diesem Lernvideo gibt es ein Handout mit Lückentext (pdf-Datei, docx-Datei). In einem weiteren GeoGebra-Arbeitsblatt wird der Satz über die Innenwinkelsumme im Viereck motiviert.
    
====Potenzen und Logarithmen====
 
====Potenzen und Logarithmen====
447

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü