Zeile 1: |
Zeile 1: |
− | Eine quadratische Funktion (auch ganzrationale Funktion 2. Grades oder Polynom 2. Grades) ist eine Funktion, die als Funktionsterm ein Polynom vom Grad 2 besitzt, also von der Form f(x)= ax²+bx+c (mit a ≠ 0) ist. Dies ist die zweite elementare Funktion, welche die SchülerInnen in der Schule kennenlernen. Der Graph ist eine Parabel mit dem [[Scheitelpunkt]] S(-(b/2a);(4ac-b²)/4a). Für a= 0 ergibt sich eine [[lineare Funktion]]. | + | Eine quadratische Funktion (auch ganzrationale Funktion 2. Grades oder Polynom 2. Grades) ist eine Funktion, die als Funktionsterm ein Polynom vom Grad 2 besitzt, also von der Form <math> f(x)= ax²+bx+c </math>(mit <math> a ≠ 0 </math>) ist. Dies ist die zweite elementare Funktion, welche die SchülerInnen in der Schule kennenlernen. Der Graph ist eine Parabel mit dem [[Scheitelpunkt]] <math> S(-(b/2a);(4ac-b²)/4a) </math>. Für <math> a= 0 </math> ergibt sich eine [[lineare Funktion]]. |
| | | |
− | == Einfluss der Parameter a, b und c == | + | == Einfluss der Parameter <math> a </math>, <math> b </math> und <math> c </math> == |
| | | |
− | ===Parameter a=== | + | ===Parameter <math> a </math>=== |
− | Wenn die Vorfaktoren b=0 und c=0 sind, reduziert sich die quadratische Funktion auf die Form ax², so dass der Graph der Funktion eine Normalparabel mit dem Vorfaktor a beschreibt, unter anderem nach unten bzw. oben geöffnet als auch gestaucht bzw. gestreckt sein kann.[[Kategorie:Analysis]] | + | Wenn die Vorfaktoren <math> b=0 </math> und <math> c=0 </math> sind, reduziert sich die quadratische Funktion auf die Form <math> ax² </math>, so dass der Graph der Funktion eine Normalparabel mit dem Vorfaktor <math> a </math> beschreibt, unter anderem nach unten bzw. oben geöffnet als auch gestaucht bzw. gestreckt sein kann.[[Kategorie:Analysis]] |
| | | |
− | ===Parameter b=== | + | ===Parameter <math> b </math>=== |
− | Bei einer Veränderung des Vorfaktors b kommt es sowohl zu einer Verschiebung des Graphen in x-Richtung als auch in y-Richtung. | + | Bei einer Veränderung des Vorfaktors <math> b </math> kommt es sowohl zu einer Verschiebung des Graphen in x-Richtung als auch in y-Richtung. |
| | | |
− | ===Parameter c=== | + | ===Parameter <math> c </math>=== |
− | Die Veränderung des Vorfaktors c bedingt eine Verschiebung des Graphen in y-Richtung. | + | Die Veränderung des Vorfaktors <math> c </math> bedingt eine Verschiebung des Graphen in y-Richtung. |
| | | |
| ==Scheitelpunkt / Scheitelpunktform== | | ==Scheitelpunkt / Scheitelpunktform== |
| | | |
− | Der [[Scheitelpunkt]] trifft eine Aussage über die Lage einer [[Parabel]] und ist identisch mit dem [[absoluten Minimum]] (für a>0) bzw. [[absoluten Maximum]] (für a<0). Falls die Lage der Parabel bekannt ist, kann diese, sofern sie eine Normalparabel ist, mit Hilfe einer Parabelschablone in ein entsprechendes [[Koordinatensystem]] eingezeichnet werden. | + | Der [[Scheitelpunkt]] trifft eine Aussage über die Lage einer [[Parabel]] und ist identisch mit dem [[absoluten Minimum]] (für <math> a>0 </math>) bzw. [[absoluten Maximum]] (für <math> a<0 </math>). Falls die Lage der Parabel bekannt ist, kann diese, sofern sie eine Normalparabel ist, mit Hilfe einer Parabelschablone in ein entsprechendes [[Koordinatensystem]] eingezeichnet werden. |
| | | |
− | Die Scheitelpunktform einer quadratischen Funktion ist insofern eine besondere Form, als das der Scheitelpunkt der Funktion direkt aus der Gleichung abgelesen werden kann:für f(x)=a(x+d)²+e lautet der Scheitelpunkt S(-d;e). | + | Die Scheitelpunktform einer quadratischen Funktion ist insofern eine besondere Form, als das der Scheitelpunkt der Funktion direkt aus der Gleichung abgelesen werden kann:für <math> f(x)=a(x+d)²+e </math> lautet der Scheitelpunkt <math> S(-d;e) </math>. |
| | | |
| Da im Mathematikunterricht zumeist die quadratischen Funktionsgleichung in der Form eines Polynoms zweiten Grades dargestellt wird, lernen die SchülerInnen das Überführen der Funktionsgleichung von der Polynomform in die Scheitelpunktform mittels der [[quadratischen Ergänzung]]. | | Da im Mathematikunterricht zumeist die quadratischen Funktionsgleichung in der Form eines Polynoms zweiten Grades dargestellt wird, lernen die SchülerInnen das Überführen der Funktionsgleichung von der Polynomform in die Scheitelpunktform mittels der [[quadratischen Ergänzung]]. |