Zahlenbereiche
Definition
Zahlenbereiche sind Mengen von Zahlen, wobei diese durch bestimmte Eigenschaften definiert sind. In jedem Bereich existieren arithmetische Gesetzmäßigkeiten, mit denen man innerhalb der Menge operieren kann.
Arten von Zahlenbereichen
ℕ = {1, 2, 3,…}, ℕ0 = ℕ ∪ {0}
ℤ = {x | x ∈ ℕ0 v –x ∈ ℕ0}
ℚ = {mit m ∈ ℤ, n ∈ ℕ}
ǁ= Menge der unendlichen und nichtperiodischen Kommazahlen
ℝ = ℚ ∪ ǁ
ℂ = {z | z = x+iy mit x,y ∈ ℝ, x=Re z, y=Im z} ; i = imaginäre Einheit
Gesetzmäßigkeiten
Natürliche Zahlen
Mit je zwei natürlichen Zahlen m und n sind auch die Summe m+n und das Produkt m·n wieder eine natürliche Zahl. Für Differenzen und Quotienten gilt das im Allgemeinen nicht. Peano-Axiome:
(P1) 1∈ ℕ
(P2) Falls n∈ ℕ, dann gibt es einen Nachfolger n‘ in ℕ, n‘ = n+1
(P3) 1 ist kein Nachfolger
(P4) n, m ∈ ℕ und n‘= m‘ → n=m
Kommutativgesetz für Addition: m+n=n+m
Assoziativgesetz für Addition: (m+n)+k=m+(n+k)
Kommutativgesetz für Multiplikation: m*n=n*m
Assoziativgesetz für Multiplikation: (m*n)*k=m*(n*k)
Distributivgesetz: m*(n+k)=m*n+m*k
Ganze Zahlen Die Menge der ganzen zahlen enthält die Elemente der Menge der natürlichen Zahlen mit {0} und alle additiven Inversen von ℕ0. In ℤ sind die Verknüpfungen Addition, Subtraktion und Multiplikation abgeschlossen. Für die Division gilt dies nicht. Rationale Zahlen
Die Erweiterung der Menge der ganzen Zahlen um die Bruchzahlen führt zur Menge der rationalen Zahlen, in der die Division im Allgemeinen gültig ist. Dabei ist die Division durch Null nicht erlaubt. Reelle Zahlen Im Bereich der reellen Zahlen wird die Menge der rationalen Zahlen um die Menge der irrationalen Zahlen erweitert. Komplexe Zahlen
Alle komplexen Zahlen lassen sich als Summe einer reellen Zahl und einem Vielfachen von i darstellen: z = x + i·y, wobei x und y reelle Zahlen sind. x heißt Realteil von z (oder kurz Re(z)) und y Imaginärteil von z (Im(z))