Ana Kuzle/Publikationen

Aus madipedia
Wechseln zu: Navigation, Suche

Zurück zur Personenseite von Ana Kuzle

Veröffentlichungen

  • Kuzle, A. (angenommen, erscheint 2016). Modeling children’s metacognition during mathematical problem solving (Research Report). PME 40. Szeged, Hungary.
  • Kuzle, A. (2016, Online First). Delving into the nature of problem solving processes in a dynamic geometry environment: Different technological effects on cognitive processing. Technology, Knowledge and Learning, (), 1–28. doi: 10.1007/s10758-016-9284-x
  • Kuzle, A., & Bruder, R. (Hrsg.) (2016). Problem lösen lernen in der Geometrie. mathematik lehren, 196.
  • Kuzle, A., & Biehler, R. (2016). A protocol for analysing mathematics teacher educators’ practices. In K. Krainer & N. Vondrova (Hrsg.), Proceedings of the Ninth Conference of European Research in Mathematics Education (S. 2847–2853). Charles University in Prague, Faculty of Education and ERME: Prague, Czech Republic.
  • Kuzle, A. (2015). Nature of metacognition in a dynamic geometry environment. LUMAT – Research and Practice in Math, Science and Technology Education, 3(5), 627–646.
  • Kuzle, A. (2015). Problem solving as an instructional method: The use of open problems in technology problem solving instruction.  LUMAT – Research and Practice in Math, Science and Technology Education, 3(1), 69–86.
  • Kuzle, A., & Biehler, R. (2015). Examining mathematics mentor teachers’ practices in professional development courses on teaching data analysis: implications for mentor teachers’ programs. ZDM Mathematics Education, 47(1),39–51. doi: 10.1007/s11858-014-0663-2
  • Kuzle, A. (2015). Wesen der Problemlöseprozesse beim Technologieeinsatz am Beispiel dynamischer Geometrie Software: Effekte mittels, von und durch digitale Medien. In A. Kuzle & B. Rott (Hrsg.), Problemlösen gestalten und beforschen. Tagungsband der Herbsttagung des GDM-Arbeitskreises Problemlösen in Münster 2014 (S. 59–74). Ars Inveniendi et Dejudicandi 4. Münster: WTM-Verlag.
  • Dohrmann, C., & Kuzle, A. (2015). Winkel in der Sekundarstufe I – Schülervorstellungen erforschen. In M. Ludwig, A. Filler, & A. Lambert (Hrsg.), Geometrie zwischen Grundbegriffen und Grundvorstellungen. Jubiläumsband des Arbeitskreises Geometrie in der Gesellschaft für Didaktik der Mathematik  (S. 62–76). Wiesbaden: Springer Verlag.
  • Kuzle, A., & Dohrmann, C. (2014). Unpacking children’s angle  “Grundvorstellungen”: The case of distance Grundvorstellung of 1° angle. In P. Liljedahl, C. Nicol, S. Oesterkle, & D. Allan (Hrsg.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 2, S. 409–416). Vancouver, Canada: PME.
  • Kuzle, A. (2013). Promoting writing in mathematics: Prospective mathematics teachers’ experiences and perspective on the process of writing when doing mathematics as problem solving. Center for Educational Policy Studies Journal, 3(4), 41–59.
  • Kuzle, A. (2013). Patterns of metacognitive behavior during mathematics problem-solving in a dynamic geometry environment. International Electronic Journal of Mathematics Education, 8(1), 20–40.
  • Kuzle, A. (2011). Preservice Teachers’ Patterns of Metacognitive Behavior During Mathematics Problem Solving in a Dynamic Geometry Environment. Doctoral Dissertation. University of Georgia–Athens, GA.


Vollständiges Publikationsverzeichnis