Zeile 78:
Zeile 78:
<math>\sqrt{|a_{n+1}||a_{n-1}|}=\sqrt{|q\cdot a_n||\frac{a_n}{q}|}=\sqrt{|a_n|^2}=|a_n|.</math> <br/>
<math>\sqrt{|a_{n+1}||a_{n-1}|}=\sqrt{|q\cdot a_n||\frac{a_n}{q}|}=\sqrt{|a_n|^2}=|a_n|.</math> <br/>
−
'''Beispiel DIN-Formate für Papier'''
+
'''Beispiel DIN-Formate für Papier'''<br />
Beginnend von der Größe A0 (84,1 x 118,9 cm) halbiert man jeweils die längere Seite um zur nächstkleineren Größe A1, A2, ... zu gelangen. Betrachtet man nur die Änderungen der Seitenlängen bilden diese jeweils geometrische Folgen mit dem Faktor <math>q=\frac{1}{2}.</math>
Beginnend von der Größe A0 (84,1 x 118,9 cm) halbiert man jeweils die längere Seite um zur nächstkleineren Größe A1, A2, ... zu gelangen. Betrachtet man nur die Änderungen der Seitenlängen bilden diese jeweils geometrische Folgen mit dem Faktor <math>q=\frac{1}{2}.</math>