Änderungen

Zur Navigation springen Zur Suche springen
1.164 Bytes hinzugefügt ,  06:01, 16. Aug. 2013
keine Bearbeitungszusammenfassung
Zeile 6: Zeile 6:  
Strengen formalen Ansprüchen hält nur die Formulierung ''„die Funktion <math>f</math>“''  stand, mit Abstrichen auch noch ''„die Funktion <math>x\mapsto f(x)</math>“''. Somit scheint es kein einheitliches Begriffsverständnis dessen zu geben, was eine „Funktion“ ist. Dieser Verdacht wird genährt, wenn man berücksichtigt, dass z. B. (auch in der Mathematik) in zunehmendem Maße (wieder!) von „Funktionen mit mehreren Veränderlichen“ gesprochen wird (etwa bei Titeln von Lehrbüchern oder von Vorlesungen) – und dabei hat eine Funktion in strenger Begriffsauffassung (als rechtseindeutige [[Relation]]) gar keine Veränderlichen (korrekt wäre hier: „einstellige“ bzw. „mehrstellige“ Funktionen). Diese Sprechweise weist aber darauf hin, dass solche Autoren neuerdings Funktionen wieder als Terme auffassen, also der Sprechweise „die Funktion <math>f(x)</math>“ zuneigen – wie es bis etwa zur Mitte des 20. Jahrhunderts üblich war. Spürt man dem in Gesprächen mit Mathematikern nach, so wird diese Vermutung insofern bestätigt, als dass das, was für sie eine Funktion ist, von dem Kontext abhängt, in dem sie forschend tätig sind:<br />
 
Strengen formalen Ansprüchen hält nur die Formulierung ''„die Funktion <math>f</math>“''  stand, mit Abstrichen auch noch ''„die Funktion <math>x\mapsto f(x)</math>“''. Somit scheint es kein einheitliches Begriffsverständnis dessen zu geben, was eine „Funktion“ ist. Dieser Verdacht wird genährt, wenn man berücksichtigt, dass z. B. (auch in der Mathematik) in zunehmendem Maße (wieder!) von „Funktionen mit mehreren Veränderlichen“ gesprochen wird (etwa bei Titeln von Lehrbüchern oder von Vorlesungen) – und dabei hat eine Funktion in strenger Begriffsauffassung (als rechtseindeutige [[Relation]]) gar keine Veränderlichen (korrekt wäre hier: „einstellige“ bzw. „mehrstellige“ Funktionen). Diese Sprechweise weist aber darauf hin, dass solche Autoren neuerdings Funktionen wieder als Terme auffassen, also der Sprechweise „die Funktion <math>f(x)</math>“ zuneigen – wie es bis etwa zur Mitte des 20. Jahrhunderts üblich war. Spürt man dem in Gesprächen mit Mathematikern nach, so wird diese Vermutung insofern bestätigt, als dass das, was für sie eine Funktion ist, von dem Kontext abhängt, in dem sie forschend tätig sind:<br />
 
Beispielsweise sind für viele Numeriker (kontextbezogen nachvollziehbar) „Funktion“ und „Tabelle“ Synonyme, oder sie identifizieren (ebenfalls kontextbezogen nachvollziehbar) „Funktion“ mit „Term“. Und man findet (z. B. in der Analysis) die Auffassung, Funktionen seien spezielle Abbildungen, und zwar von <math>{{\mathbb{R}}^{n}}</math> in <math>\mathbb{R}</math>. „[[Abbildung]]“ ist dann lediglich eine „eindeutige [[Zuordnung]]“ im Sinne eines undefinierten und unmittelbar einleuchtenden Grundbegriffs, womit dann „Funktion“ und „Abbildung“ – im Gegensatz zur mengentheoretisch begründeten Auffassung – z. T. nicht identifiziert werden. Für Zahlentheoretiker sind Funktionen oft nur Abbildungen von <math>\mathbb{Z}</math> in <math>\mathbb{R}</math> oder in <math>\mathbb{C}</math>, weil sie im Wesentlichen nur solche Funktionen untersuchen. Und die Bezeichnung „Funktionentheorie“ ist mitnichten eine „Theorie der Funktionen“ im Sinne der Auffassung von „Funktion als rechtseindeutiger [[Relation]]“. Vielmehr verweist diese Bezeichnung auf ein historisches Verständnis von „Funktion“.<br />     
 
Beispielsweise sind für viele Numeriker (kontextbezogen nachvollziehbar) „Funktion“ und „Tabelle“ Synonyme, oder sie identifizieren (ebenfalls kontextbezogen nachvollziehbar) „Funktion“ mit „Term“. Und man findet (z. B. in der Analysis) die Auffassung, Funktionen seien spezielle Abbildungen, und zwar von <math>{{\mathbb{R}}^{n}}</math> in <math>\mathbb{R}</math>. „[[Abbildung]]“ ist dann lediglich eine „eindeutige [[Zuordnung]]“ im Sinne eines undefinierten und unmittelbar einleuchtenden Grundbegriffs, womit dann „Funktion“ und „Abbildung“ – im Gegensatz zur mengentheoretisch begründeten Auffassung – z. T. nicht identifiziert werden. Für Zahlentheoretiker sind Funktionen oft nur Abbildungen von <math>\mathbb{Z}</math> in <math>\mathbb{R}</math> oder in <math>\mathbb{C}</math>, weil sie im Wesentlichen nur solche Funktionen untersuchen. Und die Bezeichnung „Funktionentheorie“ ist mitnichten eine „Theorie der Funktionen“ im Sinne der Auffassung von „Funktion als rechtseindeutiger [[Relation]]“. Vielmehr verweist diese Bezeichnung auf ein historisches Verständnis von „Funktion“.<br />     
Physiker nennen z. B. die Gleichung <math>s=s(t)</math> eine „Weg-Zeit-Funktion“, obwohl hier die Variable <math>s</math> in zwei formal unterschiedlichen und unvereinbaren Rollen auftritt. Andererseits kommt in dieser Formulierung eine sehr schöne und inhaltlich sehr reichhaltige Auffassung zum Ausdruck, die in einer formal einwandfreien (und dann auch aufgeblähten!) Darstellung verloren gehen würde. Physiker werden es sich auch nicht nehmen lassen, <math>\Psi (x,t)</math> als „Wellenfunktion“ zu bezeichnen, und wie werden beispielsweise die für sie schöne Formulierung <math>U=U(t)</math> verwenden, um damit auszudrücken, dass die „Spannung eine Funktion der Zeit“ sei. Zusammengefasst: Im physikalischen Kontext ist eine solche Sichtweise von „Funktion“ nicht nur nachvollziehbar, sondern gewiss auch sinnvoll und situationsadäquat, im rein mathematischen Kontext ist sie aber kaum tragbar – und beide Standpunkte haben ihre Berechtigung. Ein Paradoxon?<br />
+
Physiker nennen z. B. die Gleichung <math>s=s(t)</math> eine „Weg-Zeit-Funktion“, obwohl hier die Variable <math>s</math> in zwei formal unterschiedlichen und unvereinbaren Rollen auftritt. Andererseits kommt in dieser Formulierung eine sehr schöne und inhaltlich sehr reichhaltige Auffassung zum Ausdruck, die in einer formal einwandfreien (und dann auch aufgeblähten!) Darstellung verloren gehen würde. Physiker werden es sich auch nicht nehmen lassen, <math>\Psi (x,t)</math> als „Wellenfunktion“ zu bezeichnen, und sie werden beispielsweise die für sie schöne Formulierung <math>U=U(t)</math> verwenden, um damit auszudrücken, dass die „Spannung eine Funktion der Zeit“ sei. Zusammengefasst: Im physikalischen Kontext ist eine solche Sichtweise von „Funktion“ nicht nur nachvollziehbar, sondern gewiss auch sinnvoll und situationsadäquat, im rein mathematischen Kontext ist sie aber kaum tragbar – und beide Standpunkte haben ihre Berechtigung. Ein Paradoxon?<br />
 
So scheint es in der Mathematik, diesem Prototyp der exakten Wissenschaften, keine einheitliche Auffassung dessen zu geben, was eine Funktion ist. Das lässt sich sowohl durch individuelle Umfragen als auch durch einen Blick in die aktuelle Lehrbuchliteratur belegen. Und dennoch bezeichnet „Funktion“ einen wesentlichen Grundbegriff der Mathematik, der in nahezu allen Teilgebieten und auch in den Anwendungen der Mathematik vorkommt, und zwar gerade wegen dieser Uneinheitlichkeit! Genauer:<br />  
 
So scheint es in der Mathematik, diesem Prototyp der exakten Wissenschaften, keine einheitliche Auffassung dessen zu geben, was eine Funktion ist. Das lässt sich sowohl durch individuelle Umfragen als auch durch einen Blick in die aktuelle Lehrbuchliteratur belegen. Und dennoch bezeichnet „Funktion“ einen wesentlichen Grundbegriff der Mathematik, der in nahezu allen Teilgebieten und auch in den Anwendungen der Mathematik vorkommt, und zwar gerade wegen dieser Uneinheitlichkeit! Genauer:<br />  
 
Der mit „Funktion“ bezeichnete Begriff weist u. a. wegen der hier skizzierten Vagheit eine große Reichhaltigkeit auf, wie es für ''fundamentale Ideen'' der Mathematik typisch ist. Zugleich weisen die oben angedeuteten Formulierungen, die einen unterschiedlichen Gebrauch des Wortes „Funktion“ aufzeigen, auf einen gemeinsamen Kern von Eigenschaften hin, die den mit „Funktion“ bezeichneten mathematischen Begriff ausmachen, was wie folgt beschreibbar ist:<br />
 
Der mit „Funktion“ bezeichnete Begriff weist u. a. wegen der hier skizzierten Vagheit eine große Reichhaltigkeit auf, wie es für ''fundamentale Ideen'' der Mathematik typisch ist. Zugleich weisen die oben angedeuteten Formulierungen, die einen unterschiedlichen Gebrauch des Wortes „Funktion“ aufzeigen, auf einen gemeinsamen Kern von Eigenschaften hin, die den mit „Funktion“ bezeichneten mathematischen Begriff ausmachen, was wie folgt beschreibbar ist:<br />
Zeile 38: Zeile 38:  
• '''[http://de.wikipedia.org/wiki/Johann_Bernoulli Johann I Bernoulli]''': ''„Ordinaten“''
 
• '''[http://de.wikipedia.org/wiki/Johann_Bernoulli Johann I Bernoulli]''': ''„Ordinaten“''
 
|-
 
|-
| 18. Jh. || • '''[http://de.wikipedia.org/wiki/Johann_Bernoulli Johann I Bernoulli]''', '''[http://de.wikipedia.org/wiki/Leonhard_Euler Euler]''': Funktion ''„als analytischer Ausdruck“'', d. h.: als ''„Term“''<br />
+
| 18. Jh. || • '''[http://de.wikipedia.org/wiki/Johann_Bernoulli Johann I Bernoulli]''', '''[http://de.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler]''': Funktion ''„als analytischer Ausdruck“'', d. h.: als ''„Term“''<br />
 
• '''[http://de.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler]''': Funktion als ''„freihändig gezeichnete Kurve“''<br />
 
• '''[http://de.wikipedia.org/wiki/Leonhard_Euler Leonhard Euler]''': Funktion als ''„freihändig gezeichnete Kurve“''<br />
• '''[http://de.wikipedia.org/wiki/Johann_Heinrich_Lambert Johann Heinrich Lambert]''' und andere: ''graphische Darstellung empirischer Zusammenhänge''<br />
+
• '''[http://de.wikipedia.org/wiki/Johann_Heinrich_Lambert Johann Heinrich Lambert]''' und andere: ''graphische Darstellung empirischer Zusammenhänge'' (als ''Funktionsgraph'')<br />
 
• '''[http://de.wikipedia.org/wiki/William_Playfair William Playfaire]''': „Lineare Arithmetik“ zur Darstellung empirischer Daten durch ''Balkendiagramme'' und ''Kreisdiagramme''
 
• '''[http://de.wikipedia.org/wiki/William_Playfair William Playfaire]''': „Lineare Arithmetik“ zur Darstellung empirischer Daten durch ''Balkendiagramme'' und ''Kreisdiagramme''
 
|-
 
|-
| 19. Jh. || • '''[http://de.wikipedia.org/wiki/Joseph_Fourier Joseph Fourier]''', '''[http://de.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet Peter Gustav Lejeune Dirichlet]''' <ref>Aussprache: „Dirischle“ mit offenem „e“ wie in „Bett“, also: [http://de.wikipedia.org/wiki/Liste_der_IPA-Zeichen diʀiˈʃleː] (nicht aber wie meist üblich „Dirikle“); Quelle: Meyers Konversationslexikon, 5. Band, Leipzig/Wien: Bibliographisches Institut, 1895, S. 27; siehe dazu auch die begründenden Erläuterungen in [Hischer 2012, 149 ff.].</ref>, '''[http://de.wikipedia.org/wiki/Richard_Dedekind Dedekind]''': Funktion (Abbildung) als ''eindeutige Zuordnung'' (nicht mehr notwendig termdefiniert)<br />
+
| 19. Jh. || • '''[http://de.wikipedia.org/wiki/Joseph_Fourier Joseph Fourier]''', '''[http://de.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet Peter Gustav Lejeune Dirichlet]''' <ref>Aussprache: „Dirischle“ mit offenem „e“ wie in „Bett“, also: [http://de.wikipedia.org/wiki/Liste_der_IPA-Zeichen diʀiˈʃleː] (nicht aber wie meist üblich „Dirikle“); Quelle: Meyers Konversationslexikon, 5. Band, Leipzig/Wien: Bibliographisches Institut, 1895, S. 27; siehe dazu auch die begründenden Erläuterungen in [Hischer 2012, 149 ff.].</ref>, '''[http://de.wikipedia.org/wiki/Richard_Dedekind Richard Dedekind]''': <br />
 +
: Funktion (Abbildung) als ''eindeutige Zuordnung'' (nicht mehr notwendig termdefiniert)<br />
 
• [http://de.wikipedia.org/wiki/Paul_Du_Bois-Reymond '''Paul Du Bois-Reymond''']: Funktion als ''Tabelle''<br />  
 
• [http://de.wikipedia.org/wiki/Paul_Du_Bois-Reymond '''Paul Du Bois-Reymond''']: Funktion als ''Tabelle''<br />  
 
• '''[http://de.wikipedia.org/wiki/Peano Guiseppe Peano]''', '''[http://de.wikipedia.org/wiki/Charles_Sanders_Peirce Charles Sanders Peirce]''', '''[http://de.wikipedia.org/wiki/Ernst_Schr%C3%B6der_(Mathematiker) Ernst Schröder]''': Relation als ''Menge geordneter Paare''
 
• '''[http://de.wikipedia.org/wiki/Peano Guiseppe Peano]''', '''[http://de.wikipedia.org/wiki/Charles_Sanders_Peirce Charles Sanders Peirce]''', '''[http://de.wikipedia.org/wiki/Ernst_Schr%C3%B6der_(Mathematiker) Ernst Schröder]''': Relation als ''Menge geordneter Paare''
Zeile 52: Zeile 53:  
• ... viele Gesichter von Funktionen ???
 
• ... viele Gesichter von Funktionen ???
 
|}
 
|}
Während im 18. Jh. für Euler Funktionen noch entweder „analytische Ausdrücke“ (also „Terme“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen von Fourier bei ihm und Dirichlet zu einem „termfreien“ Funktionsbegriff führte:  
+
Während im 18. Jh. für '''Euler''' Funktionen noch entweder „analytische Ausdrücke“ (also „Terme“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns darüber hinaus Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) auch als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen von Fourier bei ihm und Dirichlet zu einem „termfreien“ Funktionsbegriff führte, bei dem die Funktionswerte keinem ''Bildungsgesetz'' mehr folgen (müssen). Der Grundlagenforscher und Mathematikhistoriker Ulrich Felgner schreibt hierzu: <ref>Felgner 2002, 624]</ref>
 
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.
 
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.
:: [...] Funktionen im Sinne von Fourier und Dirichlet müssen weder differenzierbar noch stetig sein.<ref>Felgner 2002, 624]</ref>
+
:: [...] Funktionen im Sinne von Fourier und Dirichlet müssen weder differenzierbar noch stetig sein.
   −
Es ist zu beachten, dass damit Funktionen nicht mehr (wie bei Euler) einem „Bildungsgesetz“ gehorchen müssen, weil sie ''nicht mehr termdefinierbar'' sein müssen (was für empirische Funktionen der „Normalfall“ ist).
+
Es ist zu beachten, dass damit bei '''Fourier''' und '''Dirichlet''' Funktionen ertsmalig nicht mehr (wie bei Euler) einem „Bildungsgesetz“ gehorchen müssen, weil sie ''nicht mehr termdefinierbar'' sein müssen (was für empirische Funktionen der „Normalfall“ ist).<br />
Auch Richard Dedekind fasst Funktionen als eindeutige Zuordnungen auf, verwendet aber die Bezeichnung „Abbildung“, wobei er aber noch einem „Gesetz“ spricht. <ref>Vgl. [Hischer 2012, 153]</ref><br />
+
Auch Richard '''Dedekind''' fasst Funktionen als eindeutige Zuordnungen auf, verwendet aber die Bezeichnung „Abbildung“, wobei er noch von einem „Gesetz“ spricht. <ref>Vgl. [Hischer 2012, 153]</ref><br />
Paul Du Bois-Reymond erfasst den Aspekt der eindeutigen Zuordnung durch die Auffassung von „Funktion als Tabelle“, was Felgner wie folgt kommentiert: <ref>[Felgner 2002, 626]; zitiert bei [Hischer 2012, 152] in Verbindung mit dem Originaltext von Du Bois-Reymond.</ref>
+
Paul '''Du Bois-Reymond''' erfasst den Aspekt der eindeutigen Zuordnung durch die Auffassung von „Funktion als Tabelle“ (wie bei den Babyloniern), was Felgner wie folgt kommentiert: <ref>[Felgner 2002, 626]; zitiert bei [Hischer 2012, 152] in Verbindung mit dem Originaltext von Du Bois-Reymond.</ref>
 
:: Auch diese Beschreibung des Funktionsbegriffes ist recht allgemein. Eine Gesetzmäßigkeit muss einer Tabelle nicht unbedingt zugrunde liegen. In die Spalte der Funktionswerte kann man ja nach Belieben Werte hineinschreiben.
 
:: Auch diese Beschreibung des Funktionsbegriffes ist recht allgemein. Eine Gesetzmäßigkeit muss einer Tabelle nicht unbedingt zugrunde liegen. In die Spalte der Funktionswerte kann man ja nach Belieben Werte hineinschreiben.
Daran anschließend versuchen Peirce, Schröder und Peano erstmalig, ''Funktionen als Relationen'' und ''Relationen als Mengen geordneter Paare'' zu beschreiben, wobei sie „geordnetes Paar“ noch undefiniert verwenden.<br />
+
Daran anschließend versuchen '''Peirce''', '''Schröder''' und '''Peano''' erstmalig, ''Funktionen als Relationen'' und ''Relationen als Mengen geordneter Paare'' zu beschreiben, wobei sie „geordnetes Paar“ noch undefiniert verwenden.<br />
Felix Hausdorff definiert 1914 erstmalig „geordnetes Paar“ auf mengentheoretischer Grundlage (wenn auch noch nicht so elegant wie 1921 [http://de.wikipedia.org/wiki/Kazimierz_Kuratowski Kazimierz Kuratowski]) und darauf aufbauend „Funktion“ als das, was wir heute ''„binäre, rechtseindeutige Relation“'' nennen: Damit wurde erstmalig der moderne Funktionsbegriff formal sauber definiert, basierend auf den Vorarbeiten vor allem der Mathematiker des 19. Jahrhunderts, wobei die vorherige Betrachtung und Einbeziehung empirischer Funktionen die Abkehr von der Forderung nach einem „Bildungsgesetz“ erzwungen hatte.
+
Felix '''Hausdorff''' definiert 1914 erstmalig „geordnetes Paar“ auf mengentheoretischer Grundlage (wenn auch noch nicht so elegant wie 1921 [http://de.wikipedia.org/wiki/Kazimierz_Kuratowski Kazimierz '''Kuratowski''']) und darauf aufbauend „Funktion“ als das, was wir heute ''„binäre, rechtseindeutige Relation“'' nennen: Damit wurde erstmalig der moderne Funktionsbegriff formal sauber definiert, basierend auf den Vorarbeiten vor allem der Mathematiker des 19. Jahrhunderts, wobei die vorherige Betrachtung und Einbeziehung empirischer Funktionen die Abkehr von der Forderung nach einem „Bildungsgesetz“ erzwungen hatte.
 
==Mengentheoretische Definition <small><small><ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 5].</ref></small></small>==
 
==Mengentheoretische Definition <small><small><ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 5].</ref></small></small>==
 
Unter Bezug auf den mit „binäre [[Relation]]“ bezeichneten Begriff lässt sich „Funktion“ knapp und elegant definieren, wobei hier statt „binäre [[Relation]]“ kurz „[[Relation]]“ gesagt wird: <ref>Auch [Deiser 2010] definiert „Funktion“ als rechtseindeutige Relation.</ref><br />
 
Unter Bezug auf den mit „binäre [[Relation]]“ bezeichneten Begriff lässt sich „Funktion“ knapp und elegant definieren, wobei hier statt „binäre [[Relation]]“ kurz „[[Relation]]“ gesagt wird: <ref>Auch [Deiser 2010] definiert „Funktion“ als rechtseindeutige Relation.</ref><br />
Zeile 77: Zeile 78:  
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! Definition
+
! vorausgehende Definitionen !! ''Erläuterungen''
 
|-
 
|-
| Es sei <math>R</math> eine (binäre) Relation. Dann gilt:
+
| Es sei <math>R</math> eine (binäre) Relation, <math>R\ne \varnothing</math>. Dann gilt: || <math>R</math> ist also eine Menge von geordneten Paaren, z. B. <math>R\subseteq A\times B</math><br />mit der nicht leeren ''Ausgangsmenge'' <math>A</math> und der nicht leeren ''Zielmenge'' <math>B</math>.
 
|-
 
|-
| (1) <math>R</math> ist genau dann '''linkseindeutig''', wenn für alle <math>{{x}_{1}},{{x}_{2}},y</math> gilt:  
+
| (1) <math>R</math> ist genau dann '''rechtseindeutig''', wenn für alle <math>x,{{y}_{1}},{{y}_{2}}</math> gilt:
 +
::: aus <math>xR{{y}_{1}}\wedge xR{{y}_{2}}</math> folgt stets  <math>{{y}_{1}}={{y}_{2}}</math>.
 +
|| '''Jedem''' Element aus der Ausgangsmenge <math>A</math> '''wird höchstens ein''' Element aus der Zielmenge <math>B</math> [[Zuordnung|zugeordnet]].<br />
 +
Oder: Die [[Zuordnung]] verläuft von links nach rechts eindeutig.
 +
|-
 +
| (2) <math>R</math> ist genau dann '''linkseindeutig''', wenn für alle <math>{{x}_{1}},{{x}_{2}},y</math> gilt:  
 
::: aus <math>{{x}_{1}}Ry\wedge {{x}_{2}}Ry</math> folgt stets  <math>{{x}_{1}}={{x}_{2}}</math>.
 
::: aus <math>{{x}_{1}}Ry\wedge {{x}_{2}}Ry</math> folgt stets  <math>{{x}_{1}}={{x}_{2}}</math>.
 +
|| '''Jedes''' Element aus der Zielmenge <math>A</math> '''ist höchstens einem''' Element aus der Ausgangsmenge <math>B</math> [[Zuordnung|zugeordnet]].<br />
 +
Oder: Die ''inverse'' [[Zuordnung]] verläuft von rechts nach links eindeutig.
 
|-
 
|-
| (2) <math>R</math> ist genau dann '''rechtseindeutig''', wenn für alle <math>x,{{y}_{1}},{{y}_{2}}</math> gilt:
+
| (3) <math>R</math> ist genau dann '''injektiv''', wenn <math>R</math> sowohl rechtseindeutig als auch linkseindeutig ist.
::: aus <math>xR{{y}_{1}}\wedge xR{{y}_{2}}</math> folgt stets  <math>{{y}_{1}}={{y}_{2}}</math>.
+
|| Die [[Zuordnung]] verläuft in beiden Richtungen eindeutig.
|-
  −
| (3) <math>R</math> ist genau dann '''injektiv''', wenn <math>R</math> sowohl linkseindeutig als auch rechtseindeutig ist.
   
|}
 
|}
 
<big>''(Es folgen weitere Definitionen, Kommentierungen und Veranschaulichungen.)''</big>
 
<big>''(Es folgen weitere Definitionen, Kommentierungen und Veranschaulichungen.)''</big>
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü