Änderungen

Zur Navigation springen Zur Suche springen
61 Bytes hinzugefügt ,  16:58, 20. Aug. 2013
K
keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:  +
<small><small>Verfasst von [[Horst Hischer]]</small></small>
 
==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>==
 
==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>==
 
Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ (und damit als „[[Zuordnung]]“) verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob <math>a</math> zu <math>b</math> „gehört“ bzw. ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls etwa <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden<br />
 
Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ (und damit als „[[Zuordnung]]“) verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob <math>a</math> zu <math>b</math> „gehört“ bzw. ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls etwa <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden<br />
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü