Änderungen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:  
| „'''Funktion'''“ ist eine Kurzbezeichnung für „rechtseindeutige Relation“. ||
 
| „'''Funktion'''“ ist eine Kurzbezeichnung für „rechtseindeutige Relation“. ||
 
• „'''Abbildung'''“ ist meist ein Synonym für „Funktion“<br />
 
• „'''Abbildung'''“ ist meist ein Synonym für „Funktion“<br />
• „'''Operator'''“ und „'''Funktional'''“ bezeichnen jeweils Funktionen in speziellen Kontexten.
+
• „'''[[#Operator als Funktion|Operator]]'''“ und „'''[[#Operator als Funktion|Funktional]]'''“ bezeichnen jeweils Funktionen in speziellen Kontexten.
 
|}
 
|}
 
Die Schreib- bzw. Sprechweisen „<math>f</math> ''ist eine Funktion''“ und „<math>f</math> ''ist eine rechtseindeutige Relation''“ sind also gemäß dieser Definition gleichbedeutend. Ihr liegt Folgendes zugrunde:
 
Die Schreib- bzw. Sprechweisen „<math>f</math> ''ist eine Funktion''“ und „<math>f</math> ''ist eine rechtseindeutige Relation''“ sind also gemäß dieser Definition gleichbedeutend. Ihr liegt Folgendes zugrunde:
Zeile 76: Zeile 76:  
| <div id="Funktionsgraph"></div><math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>  || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph'''). Es gilt <math>{{\operatorname{G}}_{f}}\subseteq A\times B</math>.
 
| <div id="Funktionsgraph"></div><math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>  || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph'''). Es gilt <math>{{\operatorname{G}}_{f}}\subseteq A\times B</math>.
 
|}
 
|}
• Ein „'''Operator'''“ ist ebenfalls eine Funktion, in der höheren Mathematik meist von einem Vektorraum in einen Vektorraum, im Mathematikunterricht z. B. beim Aspekt „Bruch als Operator“.<br />
+
<div id="Operator als Funktion"></div>• Ein „'''Operator'''“ ist ebenfalls eine Funktion, in der höheren Mathematik meist von einem Vektorraum in einen Vektorraum, im Mathematikunterricht z. B. beim Aspekt „Bruch als Operator“.<br />
 
• Ein „'''Funktional'''“ ist ein Operator von einem „Funktionenraum“ in <math>\mathbb{R}</math> oder <math>\mathbb{C}</math> (z. B. „bestimmtes Integral“). <ref>Das macht die frühere Bezeichnung „Funktionenfunktion“ für „Funktional“ plausibel..</ref>
 
• Ein „'''Funktional'''“ ist ein Operator von einem „Funktionenraum“ in <math>\mathbb{R}</math> oder <math>\mathbb{C}</math> (z. B. „bestimmtes Integral“). <ref>Das macht die frühere Bezeichnung „Funktionenfunktion“ für „Funktional“ plausibel..</ref>
 
==Didaktische Vertiefung==
 
==Didaktische Vertiefung==
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü