Zeile 13: |
Zeile 13: |
| ! Definitionen !! Anmerkungen | | ! Definitionen !! Anmerkungen |
| |- | | |- |
− | | ''Voraussetzung:'' Es seien <math>A,B,R</math> Mengen und <math>n\in {{\mathbb{N}}^{*}}\text{ }\!\!\backslash\!\!\text{ }\{1\}</math> (also <math>n>1</math>). || | + | | ''Voraussetzung:'' Es seien {{sp}} <math>A,B,R</math> {{sp}} Mengen und <math>n\in {{\mathbb{N}}^{*}}\text{ }\!\!\backslash\!\!\text{ }\{1\}</math> (also <math>n>1</math>). || |
| |- | | |- |
− | | Für beliebige Objekte <math>a, b</math> gilt:: | + | | Für beliebige Objekte {{sp}} <math>a, b</math> {{sp}} gilt:: |
− | <math>(a,b):=\{\{a\},\{a,b\}\}</math>|| <math>(a,b)</math> heißt „'''geordnetes Paar'''“.<br /> | + | <math>(a,b):=\{\{a\},\{a,b\}\}</math>|| <math>(a,b)</math> {{sp}} heißt „'''geordnetes Paar'''“.<br /> |
| Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass <math>(a,b)=(b,a)\Leftrightarrow a=b</math> gilt.<br /> | | Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass <math>(a,b)=(b,a)\Leftrightarrow a=b</math> gilt.<br /> |
− | <math>(a,b)</math> lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.<br />Spezielle Namen sind für <math>n=3</math> „'''Tripel'''“ und für <math>n=4</math> „'''Quadrupel'''“. | + | <math>(a,b)</math> {{sp}} lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.<br />Spezielle Namen sind für <math>n=3</math> „'''Tripel'''“ und für <math>n=4</math> „'''Quadrupel'''“. |
| |- | | |- |
− | | : <math>A\times B:=\{(a,b)|a\in A\wedge b\in B\}</math> || <math>A\times B</math> heißt „'''Produktmenge'''“ oder „'''kartesisches Produkt'''“ (von <math>A</math> und <math>B</math>).<br /> | + | | : <math>A\times B:=\{(a,b)|a\in A\wedge b\in B\}</math> || <math>A\times B</math> {{sp}} heißt „'''Produktmenge'''“ oder „'''kartesisches Produkt'''“ (von <math>A</math> und <math>B</math>).<br /> |
− | <math>A\times B</math> lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern. | + | <math>A\times B</math> {{sp}} lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern. |
| |- | | |- |
− | | <math>R</math> ist genau dann eine '''<math>n</math>-stellige Relation''', wenn <math>R</math> nur aus geordneten <math>n</math>-Tupeln besteht. || 2-stellige Relationen heißen auch „'''binäre''' Relationen“, sie bestehen damit nur aus geordneten Paaren. | + | | <math>R</math> {{sp}} ist genau dann eine '''<math>n</math>-stellige Relation''', wenn {{sp}} <math>R</math> {{sp}} nur aus geordneten <math>n</math>-Tupeln besteht. || 2-stellige Relationen heißen auch „'''binäre''' Relationen“, sie bestehen damit nur aus geordneten Paaren. |
| |- | | |- |
− | | <math>R</math> ist genau dann eine Relation '''von <math>A</math> nach <math>R</math>''', wenn <math> R\,\subseteq \,A\,\times \,B</math> gilt. | + | | <math>R</math> {{sp}} ist genau dann eine Relation '''von <math>A</math> nach <math>R</math>''', wenn {{sp}} <math> R\,\subseteq \,A\,\times \,B</math> {{sp}} gilt. |
| || Die geometrische Beziehung ''„Punkt liegt auf Gerade“'' ist eine Relation von einer Punktmenge '''nach''' einer Geradenmenge. | | || Die geometrische Beziehung ''„Punkt liegt auf Gerade“'' ist eine Relation von einer Punktmenge '''nach''' einer Geradenmenge. |
| |- | | |- |
− | | <math>R</math> ist genau dann eine Relation '''in <math>A</math>''', wenn <math> R\,\subseteq \,A\,\times \,A</math> gilt. || Die ''„Größer-als-Beziehung“'' ist eine Relation '''in''' einer Menge von Zahlen. | + | | <math>R</math> {{sp}} ist genau dann eine Relation '''in <math>A</math>''', wenn {{sp}} <math> R\,\subseteq \,A\,\times \,A</math> {{sp}} gilt. || Die ''„Größer-als-Beziehung“'' ist eine Relation '''in''' einer Menge von Zahlen. |
| |} | | |} |
| Für binäre Relationen wird folgende '''Schreibweise''' vereinbart:: <math>xRy:\Leftrightarrow (x,y)\in R</math> | | Für binäre Relationen wird folgende '''Schreibweise''' vereinbart:: <math>xRy:\Leftrightarrow (x,y)\in R</math> |
| + | |
| ===<div id="Spezielle Relationen"></div>Spezielle Relationseigenschaften und spezielle Relationen <small><small><ref>Erläuterungen und Veranschaulichungen dazu in [Hischer 2012, 181 ff.]</ref></small></small>=== | | ===<div id="Spezielle Relationen"></div>Spezielle Relationseigenschaften und spezielle Relationen <small><small><ref>Erläuterungen und Veranschaulichungen dazu in [Hischer 2012, 181 ff.]</ref></small></small>=== |
| {| class="wikitable" | | {| class="wikitable" |