Änderungen

Zur Navigation springen Zur Suche springen
Die Seite wurde neu angelegt: „ * Michael Neubrand (1973). Bilineare Additionstheoreme. Diplomarbeit, Universität Würzburg. * Michael Neubrand (1976). Einheiten in algebraischen Funktionen…“

* Michael Neubrand (1973). Bilineare Additionstheoreme. Diplomarbeit, Universität Würzburg.
* Michael Neubrand (1976). Einheiten in algebraischen Funktionen- und Zahlkörpern. Dissertation, Universität Würzburg.
* Michael Neubrand (1978). Mehr Zahlentheorie in die Lehrerausbildung! In: Beiträge zum Mathematikunterricht 1978, S. 206.
* Michael Neubrand (1978). Einheiten in algebraischen Funktionen- und Zahlkörpern. Journal für die reine und angewandte Mathematik 303/304, 170 – 204.
* Michael Neubrand (1979). Didaktische Bemerkungen zum Kettenbruchalgorithmus. In: Beiträge zum Mathematikunterricht 1979, S. 291 - 294.
* Michael Neubrand (1979). Ein Kurs über diophantische Gleichungen für Lehrerausbildung und Sekundarstufe II. Didaktik der Mathematik 7, 290 - 305.
* Michael Neubrand (1980). Algebraische Darstellung der Aussagenlogik als Interpolationsaufgabe. Der mathematische und naturwissenschaftliche Unterricht 33, 87 - 90.
* Michael Neubrand (1980). Der Homomorphiesatz innerhalb einer Curriculumspirale. In: Beiträge zum Mathematikunterricht 1980, S. 254 - 257.
* Michael Neubrand (1980). Eine genetische Hinführung zum Begriff der Stetigkeit. mathematica didactica 3, 147 - 150.
* Michael Neubrand (1976). The homomorphism theorem within a spiral curriculum. International Journal of Mathematical Education in Science and Technology 12, 69 - 74.
* Michael Neubrand (1981). Einheitswurzeln - Herantasten, Fakten sammeln, Wissen strukturieren. In: Beiträge zum Mathematikunterricht 1981, S. 71.
* Michael Neubrand (1981). Das Haus der Vierecke - Aspekte beim Finden mathematischer Begriffe. Journal für Mathematik-Didaktik 2, 37 - 50.
* Michael Neubrand (1981). Scharen quadratischer Zahlkörper mit gleichgebauten Einheiten. Acta Arithmetica 39, 125 - 132.
* Michael Neubrand (1982). Zur Konzeption einer Algebravorlesung für Lehrerstudenten. In: Beiträge zum Mathematikunterricht 1982, S. 85.
* Michael Neubrand (1982). Einheitswurzeln - Fragen stellen, Vermutungen verifizieren, Wissen erwerben. Didaktik der Mathematik 10, 74 - 81.
* Michael Neubrand (1981). Kann der Fundamentalsatz der Algebra intuitiv zugänglich sein? In: Beiträge zum Mathematikunterricht 1984, S. 259 - 262.
* Michael Neubrand (1984). Kettenbrüche: Beste Näherungen, transzendente Zahlen. Der Mathematikunterricht 30 (5), 30 - 47.
* Michael Neubrand (1984). Didaktik - Zahlen - Algebra. Mathematikdidaktische Überlegungen am Fundamentalsatz der Algebra. Habilitationsschrift, Universität Bonn.
* Michael Neubrand (1985). Mathematik zu einem Kinderspielzeug. Didaktik der Mathematik 13, 60 - 73.
* Michael Neubrand (1985). Hochschuldidaktische Überlegungen zum Fundamentalsatz der Algebra. Journal für Mathematik-Didaktik 6, 45 - 66.
* Michael Neubrand (1985). Mehrdimensionale Würfel - Analogie und Anschauung. In: W.S. Peters (Hrsg.), Mathematik und Didaktik der Mathematik - Bernhard Bierbaum zum 60. Geburtstag (S. 15 - 30). Bonn: Universität, Seminar für Mathematik und ihre Didaktik.
* Michael Neubrand (1985). Analoga im Tetraeder zu den sogenannten merkwürdigen Punkten im Dreieck. Praxis der Mathematik 27, 268 - 274.
* Michael Neubrand (1985). Der vierdimensionale Würfel – Beispiel für relationales Begriffsverständnis. In: Beiträge zum Mathematikunterricht 1985, S. 238 - 241.
* Michael Neubrand (1985). Bericht über die Richtlinien für den Mathematikunterricht an den Realschulen in Nordrhein-Westfalen. Zentralblatt für Didaktik der Mathematik 17, 146 - 150.
* Michael Neubrand (1985). Mehrdimensionale Würfel - Verallgemeinern und Veran- schaulichen. mathematica didactica 8, 123 - 139.
* Michael Neubrand (1986). The planetarium of Christiaan Huygens at Leiden and continued fractions. In: J. de Lange (Ed.), Mathematics for all ... in the computer age – Proceedings of the 37th Meeting of the CIEAEM, Leiden (The Netherlands), Aug. 1985 (pp 379 - 381). Utrecht: Vakgroep OW & OC, Rijksuniversiteit.
* Michael Neubrand (1986). Aspekte und Beispiele zum Prozeßcharakter der Mathematik. In: Beiträge zum Mathematikunterricht 1986, S. 25 - 32.
* Michael Neubrand (1987). Visualisieren: Beispiele zum darstellenden und operativen Charakter. Der Mathematikunterricht 33 (4), 30 - 36.
* Michael Neubrand (1987). Rudolf Stübe (Bonn) emeritiert. Mitteilungen der Gesellschaft für Didaktik der Mathematik, Nr. 43, 29 - 30.
* Michael Neubrand (1988). Über Mathematik sprechen in der Analysis. In: Beiträge zum Mathematikunterricht 1988, S. 220 - 223.
* Michael Neubrand (1988). Verwendung von Aufgaben aus Berufseignungstests im Mathematikunterricht. In: Beiträge zum Mathematikunterricht 1988, S. 224 - 227.
* Johanna Neubrand & Michael Neubrand (1988). Inhalte von Berufseignungstests im regulären Mathematikunterricht der Realschule. Die Realschule 96 (6), 211 - 214.
* Michael Neubrand (1989). Allgemeine Bildung im Mathematikunterricht und im Lehramtsstudium. mathematik lehren 33, 50 - 53.
* Michael Neubrand (1989). Speaking about and reflecting upon mathematics: Possibilities in the ordinary analysis course for prospective junior secondary teachers. In: J. Kadlecek (Ed.), Proceedings of the second conference on didactical problems in the university education of mathematics teachers, Karoly Vary (CSSR), Aug. 1988 (pp 13 - 21). Praha: Univerzitá Karlova.
* Michael Neubrand (1989). Einige neuere Beispiele für die Akzeptanz von Beweisen: Kann man daraus didaktische Folgerungen ziehen? In: Beiträge zum Mathematikunterricht 1989, S. 270 - 273.
* Michael Neubrand (1989). Report on the Italian-German Symposium on Didactics of Mathematics, Pavia (Italy), October 4 - 9, 1988. Zentralblatt für Didaktik der Mathematik 21, 121 - 127.
* Michael Neubrand (1989). Reflecting upon mathematics in regular university courses: Examples from Analysis and Algebra. In: L. Bazzini, H.G. Steiner (Eds.), Proceedings of the first Italian-German bilateral symposium in didactics of mathematics, Pavia (Italy), Oct. 1988 (pp 191 - 200). Roma: Consiglio Nazionale delle Ricerche.
* Michael Neubrand (1989). Mathematical activities with the theorem of the inscribed angles. In: E. Pehkonen (Ed.), Geometry Teaching – Geometrieunterricht: Conference on the teaching of geometry, Helsinki (Finland), Aug. 1989 ( = Research Report 74: Dept. of Teacher Education, Univ. Helsinki) (pp 213 - 220). Helsinki: University.
* Michael Neubrand (1989). Remarks on the acceptance of proofs: The case of some recently tackled major theorems. For the Learning of Mathematics 9 (3), 2 - 6.
* Michael Neubrand (1990). Über Mathematik sprechen - Möglichkeiten und Beispiele aus der Analysis. In: M. Glatfeld (Hrsg.), Finden, Erfinden, Lernen: Zum Umgang mit Mathematik unter heuristischem Aspekt (S. 62 - 83). Frankfurt; Bern; New York; Paris: Peter Lang.
* Michael Neubrand (1990). L ́apprendere e il riflettere: Perchè e come associarli nella didattica della matematica. La Matematica e la sua Didattica 4 (2), 5 - 16.
* Michael Neubrand (1990). "Brain jogging" mit räumlich-geometrischen Aufgaben. In: Beiträge zum Mathematikunterricht 1990, S. 202 - 204.
* Michael Neubrand (1990). Speaking about mathematics in the classroom. In: J.A. Dossey & al. (Eds.), Preservice Teacher Education - The Papers of Action Group 6 from the International Congress on Mathematical Education (ICME 6) Budapest, Hungary, July 27 - August 3, 1988 (pp 100 - 105). Normal (USA): Mathematics Department, Illinois State University.
* Michael Neubrand (1990). Stoffvermittlung und Reflexion: Mögliche Verbindungen im Mathematikunterricht. mathematica didactica 13, 21 - 48.
* Michael Neubrand & Manfred Möller (1992). Einführung in die Arithmetik - Ein Arbeitsbuch für Studierende des Lehramts der Primarstufe. 1. Auflage: Bad Salzdetfurth: Verlag Franzbecker 1990. 2. überarbeitete Auflage: Hildesheim: Franzbecker 1992.
* Michael Neubrand (1990). Mathematische Aktivitäten rund um den Umfangswinkelsatz. Didaktik der Mathematik 18, 271 - 289.
* Michael Neubrand (1991). Räumlich-geometrische Aufgaben als Alternative zum sog. Fünf-Minuten-Rechnen. Mathematische Unterrichtspraxis 12, 25 - 33.
* Michael Neubrand (1991). Fostering spatial thinking of students. In: M. Ciosek & St. Turnau (Eds.), The teacher of mathematics in the changing world: Proceedings of the 42nd Meeting of the International Commission for the Study and Improvement of Mathe- matics Teaching (CIEAEM), Szczyrk (Poland), 23 - 30 July 1990 (pp 194 - 187). Kraków: Wyszsa Szkola Pedagogiczna.
* Michael Neubrand (1991). Arithmetik in der Ausbildung von Studierenden des Lehramts der Primarstufe. In: Beiträge zum Mathematikunterricht 1991, S. 373 - 376.
* Michael Neubrand (1991). Elementargeometrie: Altmodisches Stoffgebiet oder Chance für einen lebendigen Mathematikunterricht? In: E. Stampe u.a. (Hrsg.), Berliner Tagung zur Didaktik der Mathematik (Tagungsband), Blossin bei Berlin, April 1991 (S. 120 – 130). Berlin; Potsdam: Humboldt-Universität, Freie Universität und Technische Universität Berlin, Brandenburgische Landeshochschule Potsdam.
* Michael Neubrand (1992). Potenzfunktionen-"Fächer" und Exponentialfunktionen- "Rosette": Graphisch unterstützte Zugänge zu zwei wichtigen Funktionenklassen. Der mathematische und naturwissenschaftliche Unterricht 45, 67 - 71.
* Michael Neubrand (1992). Über einen zyklischen Zusammenhang zwischen den besonderen Linien im Dreieck. Praxis der Mathematik 34, 216 - 218.
* Michael Neubrand (1993). Zur stofflichen und didaktischen Vielfalt der Elementar- geometrie. In: Beiträge zum Mathematikunterricht 1993, S. 287 - 290.
* Michael Neubrand (1994). Über das Umgehen mit mathematischen Sätzen. In: Beiträge zum Mathematikunterricht 1994, S. 262 - 266.
* Michael Neubrand (1994). Geometrieunterricht nach "new math": Die Öffnung der Perspektiven. In: J. Schönbeck, [[Horst Struve|H. Struve]] & K. Volkert (Hrsg.), Der Wandel im Lehren und Lernen von Mathematik und Naturwissenschaften, Band I: Mathematik (S. 27 - 49). Weinheim: Deutscher Studienverlag.
* Michael Neubrand (1994). Ergänzung zum Beitrag von Heinrich Bubeck: "Ein räumlicher Beweis des Sehnensatzes". Praxis der Mathematik 36, 255 - 256.
* Michael Neubrand (1995). Mit Sätzen umgehen können: Bestandteil mathematischer Bildung. In: R. Biehler, [[Hans Werner Heymann]] & B. Winkelmann (Hrsg.), Mathematik allge- meinbildend unterrichten: Impulse für Lehrerbildung und Schule (= IDM-Reihe "Unter- suchungen zum Mathematikunterricht", Band 21) (S. 152 – 163). Köln: Aulis Verlag.
* Michael Neubrand (1995). Multiperspectivity as a program: On the development of geo- metry teaching in the past 20 years in Austria and (West-)Germany. In: C. Mammana (Ed.), Pre-Proceedings of the ICMI-Study on Geometry (pp 200 - 203). Catania/Italy: University, Department of Mathematics.
(auch als: Arbeiten aus dem Institut für Mathematik und ihre Didaktik der Bildungs- wissenschaftlichen Hochschule Flensburg - Universität, Heft 2 / 1995).
* Michael Neubrand & [[Reinhard Hölzl]] (1996). Tagungsbericht: Die Bedeutung des Zusammenhangs zwischen Forschung und Lehre in der Mathematikdidaktik für die Ausbildung der Mathematiklehrerinnen und -lehrer. Situationsanalyse, neue Ansätze und Erfahrungen (Haus Ohrbeck, Januar 1995). Zentralblatt für Didaktik der Mathematik 28, 62 - 66.
* Michael Neubrand (1996). Bemerkungen zur Neugestaltung von Mathematiklehrplänen für die Primarstufe: Von Nordrhein-Westfalen 1985 zu Schleswig-Holstein 1996. In: Beiträge zum Mathematikunterricht 1996, S. 313 - 316.
* Michael Neubrand & Annegret Christiansen (1996). 'Ich sitze in einer Million!': Aufbau eines Millionenwürfels im 4. Schuljahr. Mathematische Unterrichtspraxis 17 (4), 9 - 16.
* Günter Graumann, [[Reinhard Hölzl]], Konrad Krainer, Michael Neubrand & [[Horst Struve]] (1996). Tendenzen der Geometriedidaktik der letzten 20 Jahre. Journal für Mathematik- Didaktik 17, 163 - 237.
* Michael Neubrand (1997). Definition - Satz - Beweis: Was kann daran allgemeinbildend sein? In: R. Biehler & H.N. Jahnke (Hrsg.), Mathematische Allgemeinbildung in der Kontroverse - Materialien eines Symposiums am 24.Juni 1996 am Zentrum für inter- disziplinäre Forschung der Universität Bielefeld (= IDM - Occasional Paper Nr. 193) (S. 13 - 26). Bielefeld: Institut für Didaktik der Mathematik der Universität,
auch in: Zeitschrift für Kultur- und Bildungswissenschaften - Flensburger Universitäts- zeitschrift 3, 29 - 42 (1997).
* Michael Neubrand (1997). Bemerkungen zum vorangehenden Diskussionsbeitrag von Heinrich Bauersfeld. Journal für Mathematik-Didaktik 18, 248.
* Michael Neubrand & [[Horst Struve]] (1997). Bericht über das Diskussionsforum “Tendenzen der Geometriedidaktik seit der Neuen Mathematik”. In: Beiträge zum Mathematikunterricht 1997, S. 585 - 587.
* (Michael Neubrand unter Mitarbeit von [[Lisa Hefendehl-Hebeker]] und nach Diskussion in der Autorengruppe) Kap. 5.1. - Mathematik im Rahmen einer modernen Allgemeinbildung. In: J. Baumert (Leitung), Gutachten zur Vorbereitung des Programms “Steigerung der Effizienz des mathematisch-naturwissenschaftlichen Unterrichts” ( = Materialen zur Bildungsplanung und Forschungsförderung, Heft 60) (S. 37 - 43). Bonn: Bund-Länder-Kommission für Bildungsplanung und Forschungsförderung.
(auch als: Arbeiten aus dem Institut für Mathematik und ihre Didaktik der Bildungs- wissenschaftlichen Hochschule Flensburg - Universität, Heft 10 / 1997).
* (M. Neubrand als Koautor mit H.B. Griffiths, C. Laborde, M. Galuzzi, V.L. Hansen und anderen) Chap. 6: The evolution of geometry education since 1900. II.2: III.3: Tendencies in the changes on a German textbook page. pp 208 - 213 On the variety of influences on the teaching of geometry: A general list and some consequences. pp 226 - 229 History of mathematics as a kind of educational laboratory. pp 232 - 234; A.2: Chap. 7: Changes and trends in geometry teaching. II.5: The geometry curriculum in Germany: past and future trends. pp 257 - 259 In: C. Mammana & V. Villani (Eds.), Perspectives on the teaching of Geometry for the 21st century (= ICMI-Study Geometry). Dordrecht: Kluwer 1998. (auch gesammelt als : Arbeiten aus dem Institut für Mathematik und ihre Didaktik der Bildungswissenschaftlichen Hochschule Flensburg - Universität, Heft 12 / 1998).
* Michael Neubrand (1998). TIMSS: Klarer sehen durch den Blick von außen. Die Grundschule 30(2), 19 - 20 (1998). (auch als: Arbeiten aus dem Institut für Mathematik und ihre Didaktik der Bildungs- wissenschaftlichen Hochschule Flensburg - Universität, Heft 9 / 1997).
* Michael Neubrand (1998). Informationen über Konzeption, Methoden und ausgewählte Ergebnisse von TIMSS. In: W. Blum & M. Neubrand (Hrsg.), TIMSS und der Mathema- tikunterricht - Informationen, Analysen, Konsequenzen (S. 5 - 10). Hannover: Schroedel.
* [[Johanna Neubrand]], Michael Neubrand & [[Heiko Sibberns]] (1998). Die TIMSS-Aufgaben aus mathematik-didaktischer Sicht: Stärken und Defizite deutscher Schülerinnen und Schüler. In: W. Blum & M. Neubrand (Hrsg.), TIMSS und der Mathematikunterricht - Informationen, Analysen, Konsequenzen (S. 17 - 27). Hannover: Schroedel 1998,.
(auch publiziert in: Behörde für Schule, Jugend und Berufsbildung Hamburg (Hrsg.) (1999), Externe Evaluation als Instrument der Qualitätssicherung und -verbesserung im Bildungswesen (S. 167 - 178). Hamburg: Behörde für Schule, Jugend und Berufsbildung.
* Michael Neubrand (1998). Geometrische Aufgaben aus dem japanischen “open-ended approach”. In: Beiträge zum Mathematikunterricht 1998, S. 483 - 486.
* Michael Neubrand (1997). Tendenzen der Geometriedidaktik. Österreichische Mathe- matische Gesellschaft (ÖMG) (Hrsg.), Schriftenreihe zur Didaktik der Mathematik der Höheren Schulen. Heft 28 (Österreichischer Mathematikerkongress Salzburg, Sept. 1997) (S. 28 - 46). Wien: ÖMG.
* [[Johanna Neubrand]] & Michael Neubrand (1999). Effekte multipler Lösungsmöglichkeiten: Beispiele aus einer japanischen Mathematikstunde. In: C. Selter & G. Walther (Hrsg.), Mathematikdidaktik als design science - Festschrift für Erich Christian Wittmann (S. 148 - 158). Leipzig, Stuttgart, Düsseldorf: Ernst Klett Grundschulverlag 1999. (auch als: Arbeiten aus dem Institut für Mathematik und ihre Didaktik der Bildungs- wissenschaftlichen Hochschule Flensburg - Universität, Heft 13 / 1998).
* Michael Neubrand (1999). Informationen zum PISA-Projekt der OECD. In: Beiträge zum Mathematikunterricht 1999, S. 389 – 392.
* Michael Neubrand & [[Manfred Möller]] (1999). Einführung in die elementare Arithmetik - Ein Arbeitsbuch für Studierende des Lehramts. (Reihe: Studium und Lehre Mathematik). Hildesheim: Franzbecker.
* [[Johanna Neubrand]] & Michael Neubrand (1999). Special Aspects of TIMSS related to Mathematics Education - Introduction. Zentralblatt für Didaktik der Mathematik (ZDM), 31 (6), 166 - 169.
* Michael Neubrand (2000). Reflecting as a Didaktik construction: Speaking about mathe- matics in the mathematics classroom. In: I. Westbury, St. Hopmann & K. Riquarts(Eds.), Teaching as a Reflective Practice: The German Didaktik Tradition (pp 251 – 265). Mahwah, N.J.; London: Lawrence Erlbaum Associates 2000.
* [[Johanna Neubrand]] & Michael Neubrand (2000). Tätigkeiten anregen - didaktische Strukturen anlegen: Eine japanische Stunde zum Beweisen. In: L. Flade & W. Herget (Hrsg.), Mathematik lehren und lernen nach TIMSS - Anregungen für die Sekundarstufen (S. 43 - 50). Berlin: Volk und Wissen.
* Michael Neubrand, [[Rolf Biehler]], [[Werner Blum]], [[Elmar Cohors-Fresenborg]], [[Lothar Flade]], [[Norbert Knoche]], [[Detlef Lind]], [[Wolfgang Löding]], [[Gerd Möller]] & [[Alexander Wynands]] (2001). Grundlagen der Ergänzung des internationalen PISA-Mathematik-Tests in der deutschen Zusatzerhebung. Zentralblatt für Didaktik der Mathematik - Berichtsteil 33 (2), 45 - 59.
* Michael Neubrand (2001). „Germany“. In: L.S. Grinstein & S.I. Lipsey (Eds.), Encyclo- pedia of Mathematics Education (pp 281 - 283). New York, London: Routledge Falmer. (auch als: Arbeiten aus dem Institut für Mathematik und ihre Didaktik der Bildungs- wissenschaftlichen Hochschule Flensburg - Universität, Heft 4 / 1996).
* Michael Neubrand (2001). The German addition to the OECD-PISA mathematics assessment: Framework for the supplementary test and its connections to the international framework. In: M. van den Heuvel - Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education - PME-25, Utrecht July 2001. Vol 1. (p 1/346). Utrecht: Freudenthal Institute.
* Michael Neubrand (2001). PISA: „Mathematische Grundbildung“ beschreiben und testen.
Die Grundschulzeitschrift 147, 58 - 59.
* Die Konzepte „mathematical literacy“ und „mathematische Grundbildung“ in der PISA- Studie. In: Beiträge zum Mathematikunterricht 2001, S. 454 - 457. (auch in: U. Amelung, B. Barzel & D. Berntzen (Hrsg.), Neues Lernen, Neue Medien: Blick über den Tellerrand. Tagungsdokumentation „T3-Pfingsttagung“ 5.-8. Juni 2001 (S. 1 - 4). Münster: Zentrale Koordination Lehrerausbildung Universität Münster.
84. Michael Neubrand (2001). PISA: „Mathematische Grundbildung“ / „mathematical literacy“ als Kern einer internationalen und nationalen Leistungsstudie. In: G. Kaiser & N. Knoche (Hrsg.), Leistungsvergleiche im Mathematikunterricht: Ein Überblick über aktuelle nationale Studien (S. 177 - 194). Hildesheim: Franzbecker.
* [[Eckhard Klieme]], Michael Neubrand & [[Oliver Lüdtke]] (2001). Mathematische Grundbil- dung: Testkonzeption und Ergebnisse. In: J. Baumert, E. Klieme, M. Neubrand, M. Prenzel, U. Schiefele, W. Schneider, P. Stanat, K.-J. Tillmann, M. Weiß (Hrsg.), PISA 2000 – Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich (S. 141 - 191). Opladen: Leske & Budrich.
* Michael Neubrand, [[Eckhard Klieme]], [[Oliver Lüdtke]] & [[Johanna Neubrand]] 2002). Kom- petenzstufen und Schwierigkeitsmodelle für den PISA-Test zur mathematischen Grund- bildung. Unterrichtswissenschaft 30 (2), 100 - 119.
* Michael Neubrand & [[Eckhard Klieme]] (2002). Mathematische Grundbildung. In: J. Baumert, C. Artelt, E. Klieme, M. Neubrand, M. Prenzel, U. Schiefele, W. Schneider, K.-J. Tillmann, M. Weiß (Hrsg.): PISA 2000 – Die Länder der Bundesrepublik Deutschland im Vergleich (S. 95 - 128). Opladen: Leske & Budrich.
* Michael Neubrand (2002). Einige Hinweise zu mathematik-didaktisch relevanten Ansätzen und Ergebnissen von PISA-2000. Mitteilungen der Gesellschaft für Didaktik der Mathematik, Nr. 74, 60 - 64.
* Michael Neubrand (2002). PISA 2000: Einige Bemerkungen zu mathematik-didaktisch relevanten Ergebnissen. In: Beiträge zum Mathematikunterricht 2002, S. 371 - 374.
* Norbert Knoche, Detlef Lind, Werner Blum, Elmar Cohors-Fresenborg, Lothar Flade, Wolfgang Löding, Gerd Möller, Alexander Wynands & Michael Neubrand (2002). Die PISA-2000-Studie: Einige Ergebnisse und Analysen. Journal für Mathematikdidaktik 23, 159 - 202.
* Michael Neubrand (2002). Mathematikunterricht nach PISA: Konzepte, Resultate, Kon- sequenzen. In: H. Buchen, L. Horster, G. Pantel & H.-G. Rolff (Hrsg.), Schulleitung und Schulentwicklung, Ergänzungslieferung 5/2002, E-2.16 (S.1-16). Stuttgart, Berlin: Josef Raabe Verlag.
* Michael Neubrand (2002). Mathematikunterricht nach PISA: Konzepte, Resultate, Kon- sequenzen. In: H. Buchen, L. Horster, G. Pantel & H.-G. Rolff (Hrsg.), Unterrichtsent- wicklung und PISA (S. 45 - 63). Stuttgart, Berlin: Josef Raabe Verlag.
* Michael Neubrand (2003). PISA und die „Standards“. Arbeiten aus dem Institut für Mathematik und ihre Didaktik der Universität Flensburg, Heft 15 / Februar 2003.
* [[Petra Stanat]], [[Cordula Artelt]], [[Jürgen Baumert]], [[Eckhard Klieme]], Michael Neubrand, [[Manfred Prenzel]], [[Ulrich Schiefele]], [[Wolfgang Schneider]], [[Gundel Schümer]], [[Klaus-Jürgen Tillmann]] und [[Manfred Weiß]] (2003). PISA und PISA-E: Zusammenfassung der bereits vorliegenden Befunde. In: J. Baumert & al. (Hrsg.), PISA 2000 - Ein differenzierter Blick auf die Länder der Bundesrepublik Deutschland (S. 51 - 76). Opladen: Leske & Budrich.
* [[Cordula Artelt]], [[Martin Brunner]], Michael Neubrand, [[Manfred Prenzel]] & [[Wolfgang Schneider]] (2003). Literacy oder Lehrplanvalidität? - Ländervergleiche auf der Basis lehr- planoptimierter PISA-Tests. In: J. Baumert & al. (Hrsg.), PISA 2000 - Ein differenzierter Blick auf die Länder der Bundesrepublik Deutschland (S. 77 - 108). Opladen: Leske & Budrich.
* [[Jürgen Rost]], [[Claus-H. Carstensen]], [[Götz Bieber]], [[Manfred Prenzel]] & Michael Neubrand (2003). Naturwissenschaftliche Teilkompetenzen im Ländervergleich. In: J. Baumert & al. (Hrsg.), PISA 2000 - Ein differenzierter Blick auf die Länder der Bundesrepublik Deutschland (S. 109 - 128). Opladen: Leske & Budrich.
* [[Johanna Neubrand]] & Michael Neubrand (2003). Profiles of mathematical achievement in the PISA-2000 mathematics test and the different structure of achievement in Japan and Germany. Paper presented at AERA-2003 - Annual Meeting, Chicago.
* [[Alexander Wynands]] & Michael Neubrand (2003). PISA und mathematische Grundbildung: Impulse für Aufgaben (nicht nur) in der Hauptschule. In: L. Hefendehl- Hebeker & St. Hußmann (Hrsg.), Mathematikdidaktik zwischen Fachorientierung und Empirie - Festschrift für Norbert Knoche (S. 299 – 311). Hildesheim: Franzbecker.
* Michael Neubrand (2003). Konzepte hinter, Ergebnisse von und Konsequenzen aus dem Mathematik-Test in PISA. In: proRegensburg e.V. (Hrsg.): Konsequenzen aus PISA für uns (S. 13 - 26). Regensburg: Eigenverlag pro Regensburg 2003.
* Michael Neubrand(2003).„Mathematicalliteracy“/„MathematischeGrundbildung“: Der Weg in die Leistungstests, die mathematikdidaktische Bedeutung, die Rolle als Interpretationshintergrund für den PISA-Test. Zeitschrift für Erziehungswissenschaft 6(3), 338 - 356.
* Michael Neubrand(2003).TheThirdInternationalMathematicsandScienceStudy (TIMSS) - Its Components and References Related to Mathematics Education. In: B. Kaur, D. Edge & Y. Ban Har (Eds.), TIMSS and Comparative Studies in Mathematics Education: An International Perspective. – A Collection of papers presented at ICME 9 - Topic Study Group 23, Tokyo 2000 (= The Mathematics Educator, Monograph One) (pp. 1 - 7). Singapore: The Association of Mathematics Educators.
* Michael Neubrand(2003).The„ProgrammeforInternationalStudentAssessment“ (PISA): Mathematical Literacy as the Focus of an International Comparison. In: B. Kaur, D. Edge & Y. Ban Har (Eds.), TIMSS and Comparative Studies in Mathematics Education: An International Perspective. – A Collection of papers presented at ICME 9 - Topic Study Group 23, Tokyo 2000 (= The Mathematics Educator, Monograph One) (pp. 107 - 110). Singapore: The Association of Mathematics Educators.
* [[Berinderjeet Kaur]], [[Liv-Sissel Gronmo]], Michael Neubrand, [[Sharleen Forbes]], [[Kyung Mee Park]], [[Tohru Tomitake]] & [[Gila Hanna]] (2004). TSG 23: TIMSS and Comparative Studies in Mathematics Education. In: H. Fujita, Y. Hashimoto, B.R. Hodgson, P.Y. Lee, S. Lerman & T. Sawada (Eds.), Proceedings of the Ninth International Congress on Mathematical Education (pp 365 - 368), Dordrecht: Kluwer.
* [[Jürgen Baumert]], [[Werner Blum]] & Michael Neubrand (2004).Drawingthelessonsfrom PISA-2000: Long term research implications: Gaining a better understanding of the relationship between system inputs and learning outcomes by assessing instructional and learning processes as mediating factors. In: D. Lenzen, J. Baumert, R. Watermann & U. Trautwein (Hrsg.), PISA und die Konsequenzen für die erziehungswissenschaftliche Forschung. Zeitschrift für Erziehungswissenschaft, Beiheft 3/2004, 143 - 158.
* Michael Neubrand(2004).Mathematicaltaskscanindicatedifferencesinteachingand learning: Selected cases from the international PISA-2000 data. In: J. Wang & B. Xu (Eds.), Trends and Challenges in Mathematics Education (pp 269 - 281). Shanghai: East China Normal University Press.
* Michael Neubrand(2004).ThePISA-Study:Differentiatedassessmentof‚mathematical literacy’. In: M.J. Hoeines & A.B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education. Vol. 1 (pp 1/222 - 1/226). Bergen (Norway): Bergen University College.
* Michael Neubrand(2004).„MathematicalLiteracy“und„mathematische Grundbildung“: Der mathematikdidaktische Diskurs und die Strukturierung des PISA- Tests. In: M. Neubrand (Hrsg.), Mathematische Kompetenzen von Schülerinnen und Schülern in Deutschland: Vertiefende Analysen im Rahmen von PISA-2000 (S. 15 - 29). Wiesbaden: VS - Verlag für Sozialwissenschaften.
* Michael Neubrand, [[Rolf Biehler]], [[Werner Blum]], [[Elmar Cohors-Fresenborg]], [[Lothar Flade]], [[Norbert Knoche]], [[Detlef Lind]], [[Wolfgang Löding]], [[Gerd Möller]], [[Alexander Wynands]] & [[Johanna Neubrand]] (2004). Der Prozess der Itementwicklung bei der nationalen Ergänzungsuntersuchung von PISA 2000: Vom theoretischen Rahmen zu den konkreten Aufgaben. In: M. Neubrand (Hrsg.), Mathematische Kompetenzen von Schülerinnen und Schülern in Deutschland: Vertiefende Analysen im Rahmen von PISA-2000 (S. 31 - 49). Wiesbaden: VS - Verlag für Sozialwissenschaften.
* [[Johanna Neubrand]] & Michael Neubrand(2004).InnereStrukturenmathematischer Leistung im PISA-2000-Test. In: M. Neubrand (Hrsg.), Mathematische Kompetenzen von Schülerinnen und Schülern in Deutschland: Vertiefende Analysen im Rahmen von PISA-2000 (S. 87 - 107). Wiesbaden: VS - Verlag für Sozialwissenschaften.
* MichaelNeubrand,RolfBiehler,WernerBlum,ElmarCohors-Fresenborg,LotharFlade, Norbert Knoche, Detlef Lind, Wolfgang Löding, Gerd Möller und Alexander Wynands: Deutsche PISA-2000-Expertengruppe Mathematik) (2004). Grundlagen der Ergänzung des internationalen PISA-Mathematiktests in der deutschen Zusatzerhebung. In: M. Neubrand (Hrsg.), Mathematische Kompetenzen von Schülerinnen und Schülern in Deutschland: Vertiefende Analysen im Rahmen von PISA-2000 (S. 229 - 258). Wies- baden: VS - Verlag für Sozialwissenschaften. (Nachdruck von Nr. 79)
*. MichaelNeubrand,RolfBiehler,WernerBlum,ElmarCohors-Fresenborg,LotharFlade, Norbert Knoche, Detlef Lind, Wolfgang Löding, Gerd Möller und Alexander Wynands: Deutsche PISA-2000-Expertengruppe Mathematik) (2004). Eine systematische und kommentierte Auswahl von Beispielaufgaben des Mathematiktests in PISA 2000. In: M. Neubrand (Hrsg.), Mathematische Kompetenzen von Schülerinnen und Schülern in Deutschland: Vertiefende Analysen im Rahmen von PISA-2000 (S. 257 - 270). Wiesbaden: VS - Verlag für Sozialwissenschaften.
* [[Werner Blum]], Michael Neubrand, [[Timo Ehmke]], [[Martin Senkbeil]], [[Alexander Jordan]], [[Frauke Ulfig]] und [[Claus Carstensen]] (2004). Mathematische Kompetenz. In: M. Prenzel & al. (Hrsg.), PISA 2003: Der Bildungsstand der Jugendlichen in Deutschland - Ergebnisse des zweiten internationalen Vergleichs (S. 47 - 92). Münster: Waxmann.
* [[Jürgen Baumert]], [[Mareike Kunter]], [[Martin Brunner]], [[Stefan Krauss]], [[Werner Blum]] & Michael Neubrand (2004). Mathematikunterricht aus Sicht der PISA-Schülerinnen und - Schüler und ihrer Lehrkräfte. In: M. Prenzel & al. (Hrsg.), PISA 2003: Der Bildungs- stand der Jugendlichen in Deutschland - Ergebnisse des zweiten internationalen Vergleichs (S. 314 - 354). Münster: Waxmann.
* [[Stefan Krauss]], [[Martin Brunner]], [[Mareike Kunter]], [[Jürgen Baumert]], [[Werner Blum]], Michael Neubrand & [[Alexander Jordan]] (2004). COACTIV: Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikunterricht und die Entwicklung von mathematischer Kompetenz. In: J. Doll & M. Prenzel (Hrsg.), Bildungsqualität von Schule: Lehrer- professionalisierung, Unterrichtsentwicklung und Schülerförderung als Strategien der Qualitätsverbesserung (S. 31 - 53). Münster: Waxmann.
* Michael Neubrand(2005).„Modellieren“-KerndermathematischenLeistungsunter- suchungen in PISA. Per Voi - Didaktisch-kulturelle Zeitschrift für DeutschlehrerInnnen in Italien (Goethe-Institut Italien), Januar-Juni/2005, S. 8 - 9.
116. DetlefLind,NorbertKnoche,WernerBlum&MichaelNeubrand(2005).Kompetenz- stufen in PISA: Eine Erwiderung auf den Beitrag von W. Meyerhöfer in JMD 25 (2004), H. 3/4. Journal für Mathematikdidaktik 26, 80 - 87.
* Michael Neubrand(2005).PISA-2003:AnregungenzurEntwicklungdesMathematik- unterrichts. mathematik lehren 128, 4 – 8.
* Michael Neubrand(2005).ImpulseausPISAfürdiemathematikdidaktischeForschung. Der Mathematikunterricht 51 (2/3), 23 - 35.
* Michael Neubrand(2005).ThePISA-study:ChallengeandImpetustoResearchin Mathematics Education. In: H.L. Chick & J.L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education. Melbourne, Australia, July 10-15, 2005. Vol. 1 (pp 1/79 - 1/82). Melbourne: University of Melbourne.
* Michael Neubrand(2005).MessenalsHerausforderungzumHandeln:DasBeispiel PISA-2003. In: H.-W. Henn & G. Kaiser (Hrsg.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation. Festschrift für Werner Blum (S. 251 - 260). Hildesheim, Berlin: Franzbecker 2005.
* Michael Neubrand(2005).„Standards“und/oder„Visionen“.NewsletterimMathe-Treff der Bezirksregierung Düsseldorf, Nr. 37, Juli 2005, S. 1.
* Michael Neubrand(2005).PISA2003:resultaten,reactiesengevolgeninDuitsland. Nieuwe Wiskrant 24 (4), 4 - 8.
* Michael Neubrand,WernerBlum,TimoEhmke,AlexanderJordan,MartinSenkbeil, Frauke Ulfig & Claus H. Carstensen (2005). Mathematische Kompetenz im Ländervergleich. In: M. Prenzel & al. (Hrsg.), PISA 2003: Der zweite Vergleich der Länder in Deutschland: Was wissen und können Jugendliche? (S. 51 - 84). Münster: Waxmann.
124. JohannaNeubrand&MichaelNeubrand(2005).MathematischeLeistungsprofilein PISA-2000. Beiträge zum Mathematikunterricht 2005, S. 420 - 423.
* Kunter,MartinBrunner,JürgenBaumert,UtaKlusmann,StefanKrauss,WernerBlum Michael Neubrand & Alexander Jordan (2005). Der Mathematikunterricht der PISA- Schülerinnen und -Schüler: Schulformunterschiede in der Unterrichtsqualität. Zeitschrift für Erziehungswissenschaft 8 (4), 502 - 520.
* Michael Neubrand(2005).BemerkungenzurRelevanzvonPISAfürdiemathematik- didaktische Forschung. In: Ch. Kaune, I. Schwank & J. Sjuts (Hrsg.), Mathematik- didaktik im Wissenschaftsgefüge: Zum Verstehen und Unterrichten mathematischen Denkens - Festschrift für Elmar Cohors-Fresenborg. Band 2 (S. 9 - 25). Osnabrück: Forschungsinstitut für Mathematikdidaktik.
* AlexanderJordan,NatalieRoss,StefanKrauss,JürgenBaumert,WernerBlum,Michael Neubrand, Katrin Löwen, Martin Brunner und Mareike Kunter (2006). Klassifikations- schema für Mathematikaufgaben: Dokumentation der Aufgabenklassifikation im COACTIV-Projekt. (Materialien aus der Bildungsforschung, Nr. 81). Berlin : Max- Planck-Institut für Bildungsforschung.
* Michael Neubrand(2006).ProfessionellesWissenvonMathematik-Lehrerinnenund Lehrern: Konzepte und Ergebnisse aus der PISA- und der COACTIV-Studie und Konsequenzen für die Lehrerausbildung. In: F. Kostrzewa (Hrsg.), Lehrerbildung im Diskurs (Schriftenreihe des Lehrerbildungszentrums in Zusammenarbeit mit dem Rektorat der Universität zu Köln, Band 1) (S. 53 - 72). Eitorf: gata-Verlag 2006,
und In: F. Rieß (Hrsg.), Einblicke in aktuelle Forschungszusammenhänge zum Mathematik- unterricht (Oldenburger Vordrucke, Nr. 542) (S. 7 - 20). Oldenburg: Didaktisches Zentrum der Carl-von-Ossietzky-Universität und Das Gymnasium in Bayern 2/2008, 22 - 27.
* Michael Neubrand(2006).ProfessionalitätvonMathematik-Lehrerinnenund-Lehrern: Konzeptualisierungen und Ergebnisse aus der COACTIV- und der PISA-Studie. Beiträge zum Mathematikunterricht 2006, S. 5
* StefanKrauss,JürgenBaumert,WernerBlum,MichaelNeubrand,AlexanderJordan, Martin Brunner, Mareike Kunter & Katrin Löwen (2006). Die Konstruktion eines Tests zum fachlichen und zum fachdidaktischen Wissen von Mathematiklehrkräften. Beiträge zum Mathematikunterricht 2006, S. 319 - 322.
* Michael Neubrand(2006).MultipleLösungswegefürAufgaben:BedeutungfürFach, Lernen, Unterricht und Leistungserfassung. In: W. Blum, Ch. Drüke-Noe, R. Hartung & O. Köller (Hrsg.), Bildungsstandards Mathematik: konkret. Sekundarstufe I: Aufgabenbeispiele, Unterrichtsanregungen, Fortbildungsideen (S. 162 - 177). Berlin: Cornelsen.
* MichaelNeubrand(2006).DasWissenüberLehrenundLernenstärken(Interview).In: Bundesverband der Deutschen Industrie (BDI) und Deutsche Telekom Stiftung (Hrsg.), Innovationsindikator Deutschland 2006 (S. 73). Bonn, Berlin: BDI und Deutsche Telekom Stiftung.
* TimoEhmke,WernerBlum,MichaelNeubrand,AlexanderJordan,FraukeUlfig(2006). Wie verändert sich die mathematische Kompetenz von der neunten zur zehnten Klassen- stufe? In: M. Prenzel & al. (Hrsg.): PISA 2003: Untersuchungen zur Kompetenzentwick- lung im Verlauf eines Schuljahres (S. 63 - 85). Münster: Waxmann.
* MareikeKunter,ThamarDubberke,JürgenBaumert,WernerBlum,MichaelNeubrand, Martin Brunner, Alexander Jordan, Uta Klusmann, Stefan Krauss, Katrin Löwen & Yi- Miau Tsai (2006). Mathematikunterricht in den PISA-Klassen 2003: Rahmenbedingungen, Formen und Lehr-Lernprozesse. In: M. Prenzel & al. (Hrsg.), PISA 2004: Untersuchungen zur Kompetenzentwicklung im Verlauf eines Schuljahres (S. 161 - 194). Münster: Waxmann.
* (zusammenmitMartinBrunner,MareikeKunter,StefanKrauss,UtaKlusmann,Jürgen Baumert, Werner Blum, Michael Neubrand, Thamar Dubberke, Alexander Jordan, Katrin Löwen und Yi-Miau Tsai (2006). Die professionelle Kompetenz von Mathematiklehr- kräften: Konzeptualisierung, Erfassung und Bedeutung für den Unterricht. Eine Zwischenbilanz des COACTIV-Projekts. In: Prenzel, M. & Allolio-Näcke, L. (Hrsg.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht des DFG- Schwerpunktprogramms (S. 54 - 83). Münster: Waxmann.
* MartinBrunner,MareikeKunter,StefanKrauss,JürgenBaumert,WernerBlum,Thamar Dubberke, Alexander Jordan, Uta Klusmann, Yi-Miau Tsai & Michael Neubrand (2006). Welche Zusammenhänge bestehen zwischen dem fachspezifischen Professionswissen vom Mathematiklehrkräften und ihrer Ausbildung sowie beruflichen Fortbildung? Zeitschrift für Erziehungswissenschaft 9 (4), 521 - 54.
* Michael Neubrand(2007). Begründe, dass es unendlich viele Primzahlen gibt! Studentisches Umgehen mit einem klassischen Beweis. In: [[Andreas Büchter|A. Büchter]], H. Humenberger, St. Hußmann & S. Prediger (Hrsg.), Realitätsnaher Mathematikunterricht – vom Fach aus und für die Praxis. Festschrift für Hans-Wolfgang Henn zum 60. Geburtstag. Hildesheim & Berlin: Franzbecker 2007, S. 277 - 285.
* Michael Neubrand & [[Johanna Neubrand]](2007).MathematischeLeistungenund mathematischer Unterricht am Gymnasium nach den Ergebnissen von PISA. In: S. Jahnke-Klein, H. Kiper & L. Freisel (Hrsg.), Gymnasium heute: Zwischen Elitebildung und Förderung der Vielen S. 93 - 109). Baltmannsweiler: Schneider Verlag Hohengehren.
* [[Johanna Neubrand]] & Michael Neubrand(2007). Geometrie: Was sollen Haupt- schülerinnen und -Schüler wissen? Beispiele für die Vernetzung praxisorientierten Grundwissens. Lernchancen 55, 28 - 33.
* Michael Neubrand(2007). Dimensionen des Lehrerwissens: Ein Gespräch über die Lehrerstudie COACTIV und das Professionswissen von Lehrkräften. (Interview). forum schule – Magazin für Lehrerinnen und Lehrer, März 2007, 24 - 25.
* MareikeKunter,UtaKlusmann,ThamarDubberke,JürgenBaumert,WernerBlum, Michael Neubrand, Martin Brunner, Alexander Jordan, Stefan Krauss, Katrin Löwen & Yi-Miau Tsai (2007). Linking Aspects of Teacher Competence to Their Instruction: Results from the COACTIV Project. In: Prenzel, M. (Ed.), Studies on the Educational Quality of Schools. The final report on the DFG Priority Programme (pp 39 - 59). Münster: Waxmann.
* Michael Neubrand & [[Alexander Jordan]] (2007). Mathematikbezogenes Lehrerwissen: Konzepte und Ergebnisse aus der COACTIV-Studie. Beiträge zum Mathematikunterricht 2007, S. 424 - 427.
* MichaelNeubrand&JianshengBao(2008).ReportonDiscussionGroupDG-11:Inter- national comparisons in mathematics education. In: M. Niss (Ed.): Proceedings of the 10th International Congress on Mathematical Education, 4-11 July, 2004 (pp 470 - 474). Roskilde: IMFUFA, Department of Science, Systems and Models, Roskilde University, Denmark.
* AlexanderJordan,StefanKrauss,KatrinLöwen,WernerBlum,MichaelNeubrand, Martin Brunner, Mareike Kunter und Jürgen Baumert (2008). Aufgaben im COACTIV- Projekt: Zeugnisse des kognitiven Aktivierungspotentials im deutschen Mathematikunterricht. Journal für Mathematik-Didaktik 29 (2), 83 - 107.
* Michael Neubrand (2008). Knowledge of Teachers–Knowledge of Students: Conceptualizations and outcomes of a Mathematics Teacher Education Study in Germany. Paper presented at the Symposium on the Occasion of the 100th Anniversary of ICMI (Rome, March 5-8, 2008), Working Group 2: The professional formation of teachers. Roma: Academia dei Lincei & Unione Matematica d’ Italia.
* Michael Neubrand, [[Helen Chick]] & [[Roza Leikin]] (2008). Researching mathematics teachers’ knowledge and beliefs. Discussion Group. In O. Figueras, J.L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX. Vol. 1. (pp 1-192). México: Cinvestav-UMSNH.
* Michael Neubrand & [[Nanette Seago]], with [[Cecilia Agudelo-Valderrama]], [[Lucie DeBlois]], [[Roza Leikin]] (2008). The balance of teacher knowledge: Mathematics and Pedagogy. In: D.L. Ball & R. Even (Eds.), The professional education and development of teachers of mathematics - The 15th ICMI Study (= New ICMI Study Series, Vol. 11) (pp 215 - 230). Berlin, Heidelberg, New York: Springer (in print, to appear Nov. 2008).
* StefanKrauss,MichaelNeubrand,WernerBlum,JürgenBaumert,MartinBrunner, Mareike Kunter, Alexander Jordan (2008). Die Untersuchung des professionellen Wissens deutscher Mathematik-Lehrerinnen und -Lehrer im Rahmen der COACTIV- Studie. Journal für Mathematik-Didaktik 29 (2) (im Druck).
* WernerBlum,StefanKrauss&MichaelNeubrand(2008).Zusammenhängedes Professionswissens mit Lehrermerkmalen, Unterrichtsqualität und Leistungszuwächsen der Schüler. Beiträge zum Mathematikunterricht 2008, (im Druck).
* StefanKrauss,MartinBrunner,MareikeKunter,JürgenBaumert,WernerBlum,Michael Neubrand & Alexander Jordan (2008/09). Pedagogical Content Knowledge and Content Knowledge of Secondary Mathematics Teachers. Journal of Educational Psychology (in print).
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü