Änderungen

Zur Navigation springen Zur Suche springen
Zeile 67: Zeile 67:  
* '''Exponentialfunktionen'''. Im Lernvideo werden die Eigenschaften Monotonie und Nicht-Existenz von Nullstellen von Exponentialfunktionen zur Basis a mit f(x) = a^x  aus Sätzen (mit Beweis) deduziert. Außerdem wird illustriert, warum die x-Achse eine Asymptote ist. Am Ende des Lernvideos werden zwei einfache Aufgaben gelöst, um den Umgang mit der Funktionsgleichung f(x) = c * a^x  zu festigen.
 
* '''Exponentialfunktionen'''. Im Lernvideo werden die Eigenschaften Monotonie und Nicht-Existenz von Nullstellen von Exponentialfunktionen zur Basis a mit f(x) = a^x  aus Sätzen (mit Beweis) deduziert. Außerdem wird illustriert, warum die x-Achse eine Asymptote ist. Am Ende des Lernvideos werden zwei einfache Aufgaben gelöst, um den Umgang mit der Funktionsgleichung f(x) = c * a^x  zu festigen.
 
* '''Polynomdivision'''. Im Lernvideo werden die Polynomdivision und das Horner-Schema als alternative Rechenverfahren vorgestellt und in ihrer Ausführung erläutert. Computeralgebrasystem- (CAS) und Tabellenkalkulations-Applikationen (TK) unterstützen das Üben zum Erlernen beider Routinen.
 
* '''Polynomdivision'''. Im Lernvideo werden die Polynomdivision und das Horner-Schema als alternative Rechenverfahren vorgestellt und in ihrer Ausführung erläutert. Computeralgebrasystem- (CAS) und Tabellenkalkulations-Applikationen (TK) unterstützen das Üben zum Erlernen beider Routinen.
 +
* '''Nullstellenberechnung ganzrationaler Funktionen'''. Im Lernvideo wird eine Strategie exemplarisch vorgestellt, um reelle Nullstellen aus ganzrationalen Funktionen, die mindestens eine ganzzahlige Nullstelle enthalten, rechnerisch bestimmen zu können.
 +
Dabei werden mathematische Werkzeuge, wie der Fundamentalsatz der Algebra und der Satz über das Abspalten von Linearfaktoren angewendet. Die Polynomdivision oder das Horner-Schema werden hier als bekannt vorausgesetzt.
    
====Gleichungssysteme====
 
====Gleichungssysteme====
447

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü