Zeile 1: |
Zeile 1: |
| == Übersicht == | | == Übersicht == |
| + | * Streng genommen ist zwischen „Funktionsgraph“ (als Menge geordneter Paare) und der visualisierenden Darstellung durch ein „Schaubild“ zu unterscheiden: |
| Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br /> | | Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br /> |
| Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird.<br /> | | Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird.<br /> |
Zeile 5: |
Zeile 6: |
| Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br /> | | Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br /> |
| (Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich aber in den meisten unterrichtsrelevanten Fällen üblich.) | | (Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich aber in den meisten unterrichtsrelevanten Fällen üblich.) |
− |
| |
| == Visualisierung von Funktionsgraphen == | | == Visualisierung von Funktionsgraphen == |
| * Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert. | | * Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert. |