Änderungen

Zur Navigation springen Zur Suche springen
11 Bytes entfernt ,  14:02, 1. Aug. 2016
K
keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1: −
Der Terminus „Zuordnung“ wird (vor allem im präformalen Stadium des Mathematikunterrichts) im Sinne eines undefinierten Grundbegriffs in folgendem Sinne verwendet:<br />
+
Der Terminus ''Zuordnung'' wird (vor allem im präformalen Stadium des Mathematikunterrichts) im Sinne eines undefinierten Grundbegriffs in folgendem Sinne verwendet:
Gewissen Elementen einer Menge (nicht notwendig allen!) wird ein Element (oder werden mehrere Elemente) einer weiteren (oder derselben) Menge „zugeordnet“ (was eine zirkuläre Beschreibung und keine Definition ist).<br />
+
<br />
Eine solche „Zuordnung“ ist damit im streng formalen Verständnis nichts weiter als eine „binäre [[Relation]]. Wenn eine Zuordnung „eindeutig“ in dem Sinne ist, dass den Elementen der einen Menge jeweils höchstens ein Element der weiteren Menge (s. o.) zugeordnet ist, so liegt eine [[Funktion]] vor, die Relation ist dann [[Funktion: mengentheoretische Auffassung#rechtseindeutig|rechtseindeutig]]. Insbesondere im präformalen Stadium des Mathematikunterrichts verlangt man meistens, dass ''jedem'' Element der einen Menge ''höchstens'' (und damit ''genau'') ein Element der weiteren Menge zugeordnet wird.
+
Gewissen Elementen einer Menge (nicht notwendig allen!) wird ein Element (oder werden mehrere Elemente) einer weiteren (oder derselben) Menge ''zugeordnet'' (was eine zirkuläre Beschreibung und keine Definition ist).<br />
 +
Eine solche ''Zuordnung'' ist damit im streng formalen Verständnis nichts weiter als eine ''binäre [[Relation]]''. Wenn eine Zuordnung ''eindeutig'' in dem Sinne ist, dass den Elementen der einen Menge jeweils höchstens ein Element der weiteren Menge (s. o.) zugeordnet ist, so liegt eine [[Funktion]] vor, die Relation ist dann ''[[Funktion: mengentheoretische Auffassung#rechtseindeutig|rechtseindeutig]]''. Insbesondere im präformalen Stadium des Mathematikunterrichts verlangt man meistens, dass ''jedem'' Element der einen Menge ''höchstens'' (und damit ''genau'') ein Element der weiteren Menge zugeordnet wird.
       
[[Kategorie:Enzyklopädie]]
 
[[Kategorie:Enzyklopädie]]
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü