Änderungen

Zur Navigation springen Zur Suche springen
155 Bytes hinzugefügt ,  21:01, 3. Apr. 2018
K
keine Bearbeitungszusammenfassung
Zeile 13: Zeile 13:     
'''Beispiel''': Gesucht seien (die) Lösungen von <math>-1 < x\leq 3</math>. Hier wird die Abhängigkeit von der Grundmenge deutlich (auch wenn der Mengenbegriff nicht verfügbar sein sollte), was sich wie folgt notieren lässt: <br />   
 
'''Beispiel''': Gesucht seien (die) Lösungen von <math>-1 < x\leq 3</math>. Hier wird die Abhängigkeit von der Grundmenge deutlich (auch wenn der Mengenbegriff nicht verfügbar sein sollte), was sich wie folgt notieren lässt: <br />   
* <math>L_{\mathbb{N}}=\{0,1,2,3\}</math>, <math>L_{\mathbb{Z}}=\{-1,0,1,2,3\}</math>, <math>L_{\mathbb{R}}= {]-1, 3]}</math> (halboffenes Intervall). <br />  
+
* <math>L_{\mathbb{N}}=\{0,1,2,3\}</math>, <math>L_{\mathbb{Z}}=\{-1,0,1,2,3\}</math>, <math>L_{\mathbb{R}}= {]-1, 3]}</math> (halboffenes [https://de.wikipedia.org/wiki/Intervall_(Mathematik) Intervall]). <br />  
Vollrath  empfiehlt zum Verständnis  von „Lösungsmenge“ die Betrachtung von Gleichungen, die Terme der  sog. Ganzteilfunktion enthalten („Integer-Funktion“, früher auch „Gauß-Klammer“ genannt, heute „ceil“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Abrundungsfunktion“], ferner zusätzlich „floor“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Aufrundungsfunktion“]). <br />
+
Vollrath  empfiehlt zum Verständnis  von „Lösungsmenge“ die Betrachtung von Gleichungen, die Terme der  sog. Ganzteilfunktion enthalten („Integer-Funktion“, früher auch „Gauß-Klammer“ genannt, heute „ceil“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Abrundungsfunktion“], ferner zusätzlich „floor“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Aufrundungsfunktion“]).<ref>Hans-Joachim Vollrath: Didaktik der Algebra. Stuttgart 1974, Klett Studienbücher, S. 92. </ref> <br />
 
Betrachtet man z. B. die Gleichung  <math>\lfloor x \rfloor = 2</math>, so ist <math>L= {[2, 3[}</math>.
 
Betrachtet man z. B. die Gleichung  <math>\lfloor x \rfloor = 2</math>, so ist <math>L= {[2, 3[}</math>.
   Zeile 24: Zeile 24:     
== Fachdidaktische Diskussion ==
 
== Fachdidaktische Diskussion ==
Unter dieser Überschrift können fachdidaktische Kontroversen zum Begriff beschrieben werden. Die Diskussion ''über die Seite selbst'' sollte auf der dazugehörigen [[Diskussion:{{PAGENAME}}|Diskussionsseite]] (siehe die Reiter über dem Artikel) geführt werden.-->
+
Unter dieser Überschrift können fachdidaktische Kontroversen zum Begriff beschrieben werden. Die Diskussion ''über die Seite selbst'' sollte auf der dazugehörigen [[Diskussion:{{PAGENAME}}|Diskussionsseite]] (siehe die Reiter über dem Artikel) geführt werden.
 
  −
== Literatur ==
      +
== Literatur ==-->
 
== Quellen ==
 
== Quellen ==
 
<references />
 
<references />
 
{{zitierhinweis}}
 
{{zitierhinweis}}
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü