Änderungen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:  
Das ''Permanenzprinzip'' besagt, dass bei einer [[Zahlbereichserweiterung]] die bisher geltenden Rechengesetze weiterhin gelten sollen. Genauer gesagt: Operationen im erweiterten Zahlenbereich sind so festzulegen, dass sie mit den für die [[Natürliche Zahlen|natürlichen Zahlen]] gültigen [[Rechengesetze|Gesetzen]] verträglich sind.<ref>[[Lisa Hefendehl-Hebeker|Hefendehl-Hebeker, I.]], [[Inge Schwank|Schwank, I.]]: Erweiterungen des Zahlensystems, In:  Handbuch der Mathematikdidaktik, S. 88. Berlin, Heidelberg: Springer Spektrum</ref>
 
Das ''Permanenzprinzip'' besagt, dass bei einer [[Zahlbereichserweiterung]] die bisher geltenden Rechengesetze weiterhin gelten sollen. Genauer gesagt: Operationen im erweiterten Zahlenbereich sind so festzulegen, dass sie mit den für die [[Natürliche Zahlen|natürlichen Zahlen]] gültigen [[Rechengesetze|Gesetzen]] verträglich sind.<ref>[[Lisa Hefendehl-Hebeker|Hefendehl-Hebeker, I.]], [[Inge Schwank|Schwank, I.]]: Erweiterungen des Zahlensystems, In:  Handbuch der Mathematikdidaktik, S. 88. Berlin, Heidelberg: Springer Spektrum</ref>
   −
Aus der [[Einbettung]] des ursprünglichen Zahlbereichs in den erweiterten Zahlbereich ergeben sich für Rechnungen mit den ursprünglichen Zahlen die dort vorgegebenen Ergebnisse. Für die Verknüpfung der ursprünglichen Zahlen mit neuen Zahlen aus dem erweiterten Zahlbereich sowie der neuen Zahlen untereinander müssen die Ergebnisse dann so gewählt werden, dass sie konsistent sind. Das führt dazu, dass Muster in [[Permanenzreihen]] fortgeführt werden können.   
+
Aus der [[Einbettung]] des ursprünglichen Zahlbereichs in den erweiterten Zahlbereich ergeben sich für Rechnungen mit den ursprünglichen Zahlen die dort vorgegebenen Ergebnisse. Für die Verknüpfung der ursprünglichen Zahlen mit neuen Zahlen aus dem erweiterten Zahlbereich sowie der neuen Zahlen untereinander müssen die Ergebnisse so gewählt werden, dass sie konsistent sind. Das führt dazu, dass Muster in [[Permanenzreihen]] fortgeführt werden können.   
 
   
 
   
Über das Permanenzprinzip und Permanenzreihen oder das [[Distributivgesetz]] können zum Beispiel die [[Addition]], [[Subtraktion]] und [[Multiplikation]] negativer Zahlen erklärt werden. Man kann damit z. B. auch begründen, dass es keine gute Definition für <math>0^0</math> geben kann, da dazu zwei Permanenzreihen mit unterschiedlichen Ergebnissen existieren.
+
Über das Permanenzprinzip und Permanenzreihen oder das [[Distributivgesetz]] können zum Beispiel [[Addition]], [[Subtraktion]] und [[Multiplikation]] negativer Zahlen erklärt werden. Man kann damit z. B. auch begründen, dass es keine gute Definition für <math>0^0</math> geben kann, da dazu zwei Permanenzreihen mit unterschiedlichen Ergebnissen existieren.
    
<!--
 
<!--
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü