Änderungen

Zur Navigation springen Zur Suche springen
Keine Änderung der Größe ,  15:44, 8. Jan. 2013
keine Bearbeitungszusammenfassung
Zeile 6: Zeile 6:     
Mengendiagramme können Mengenbeziehungen verdeutlichen, sind jedoch  im  Allgemeinen nicht als mathematische Beweismittel geeignet. Als  Beweismittel eignen sich nur solche Mengendiagramme, die alle  möglichen  Relationen der vertretenen Mengen darstellen; solche  Diagramme werden  Venn-Diagramme genannt. Der Nachteil von  Venn-Diagrammen liegt darin,  dass sie bei mehr als drei beteiligten  Mengen rasch unübersichtlich  werden, weil sie bei n Objekten 2n  Möglichkeiten darstellen müssen.  Venn selber konnte unter der  Verwendung von Ellipsen bis zu vier,  schließlich sogar fünf beteiligte  Mengen darstellen.
 
Mengendiagramme können Mengenbeziehungen verdeutlichen, sind jedoch  im  Allgemeinen nicht als mathematische Beweismittel geeignet. Als  Beweismittel eignen sich nur solche Mengendiagramme, die alle  möglichen  Relationen der vertretenen Mengen darstellen; solche  Diagramme werden  Venn-Diagramme genannt. Der Nachteil von  Venn-Diagrammen liegt darin,  dass sie bei mehr als drei beteiligten  Mengen rasch unübersichtlich  werden, weil sie bei n Objekten 2n  Möglichkeiten darstellen müssen.  Venn selber konnte unter der  Verwendung von Ellipsen bis zu vier,  schließlich sogar fünf beteiligte  Mengen darstellen.
''''
+
[br]
 
'''Beispiel für den Einsatz von Mengendiagrammen bei Funktionen:'''
 
'''Beispiel für den Einsatz von Mengendiagrammen bei Funktionen:'''
  
277

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü