Das Problem der Nullergänzung umgeht man indessen, wenn man von der entsprechenden Regel ausgehend auf den Differenzenquotienten zurückschließt.<ref name="Rüthing" /> Hier wandelt sich die Nullergänzung zu einer gewöhnlichen Nullauflösung, die für die Schüler nicht schwer zu durchschauen ist. Die Notierungs- und Denkrichtung liegen hier im Einklang, so dass dieser Beweis didaktisch ebenso vorteilhafter ist, als die in Beweismöglichkeit 1 skizzierte Vorgehensweise. Zu beachten ist hier jedoch, dass ebenso die Stetigkeit der Funktionen bei den Grenzübergängen berücksichtigt werden muss. Das grundlegende Problem der Regelfindung wird durch diesen Beweis jedoch nicht gelöst. | Das Problem der Nullergänzung umgeht man indessen, wenn man von der entsprechenden Regel ausgehend auf den Differenzenquotienten zurückschließt.<ref name="Rüthing" /> Hier wandelt sich die Nullergänzung zu einer gewöhnlichen Nullauflösung, die für die Schüler nicht schwer zu durchschauen ist. Die Notierungs- und Denkrichtung liegen hier im Einklang, so dass dieser Beweis didaktisch ebenso vorteilhafter ist, als die in Beweismöglichkeit 1 skizzierte Vorgehensweise. Zu beachten ist hier jedoch, dass ebenso die Stetigkeit der Funktionen bei den Grenzübergängen berücksichtigt werden muss. Das grundlegende Problem der Regelfindung wird durch diesen Beweis jedoch nicht gelöst. |