Änderungen

Zur Navigation springen Zur Suche springen
60 Bytes hinzugefügt ,  19:45, 21. Jan. 2013
K
keine Bearbeitungszusammenfassung
Zeile 15: Zeile 15:  
===Allgemeiner Algorithmus<ref>Danckwerts,R.; Vogel, D. (2006): Analysis verständlich unterrichten. Spektrum AkademischerVerlag</ref>===  
 
===Allgemeiner Algorithmus<ref>Danckwerts,R.; Vogel, D. (2006): Analysis verständlich unterrichten. Spektrum AkademischerVerlag</ref>===  
   −
1.Schritt:  Welche Größe ist zu optimieren? Stellen Sie eine Funktion(Zielfunktion) auf um diese Größe zu berechnen. Bestimmen Sie den [[Definitionsbereich]] der Funktion.
+
1.Schritt:  Welche Größe ist zu optimieren? Stellen Sie eine Funktion (Zielfunktion) auf um diese Größe zu berechnen. Bestimmen Sie den [[Definitionsbereich]] der Funktion.
    
2.Schritt:  Von wie vielen Variablen hängt diese Funktion ab? Sind Variablen zu eliminieren? Suchen Sie nach Nebenbedingungen.
 
2.Schritt:  Von wie vielen Variablen hängt diese Funktion ab? Sind Variablen zu eliminieren? Suchen Sie nach Nebenbedingungen.
Zeile 27: Zeile 27:       −
->Ähnliche Algorithmen finden sich bei: <ref>Frank, B.; Schulz, W.; Tietz, W.;Warmuth, E. (2004): Wissensspeicher Mathematik. Cornelsen Verlag</ref> und <ref>Seeger, H.: Mathematik. Prüfungs- und Basiswissen der Oberstufe. Tandem Verlag</ref>
+
<math> \rightarrow </math> Ähnliche Algorithmen finden sich bei: <ref>Frank, B.; Schulz, W.; Tietz, W.;Warmuth, E. (2004): Wissensspeicher Mathematik. Cornelsen Verlag</ref> und <ref>Seeger, H.: Mathematik. Prüfungs- und Basiswissen der Oberstufe. Tandem Verlag</ref>
      Zeile 54: Zeile 54:  
<math> A </math> hängt zunächst von den beiden Variablen <math> r </math> und <math> h </math> ab, folglich muss über die Nebenbedingung <math> V = 1l = 1dm^3 = 1.000cm^3 </math> eine der beiden Variablen ersetzt werden (beispielsweise <math> h </math>).
 
<math> A </math> hängt zunächst von den beiden Variablen <math> r </math> und <math> h </math> ab, folglich muss über die Nebenbedingung <math> V = 1l = 1dm^3 = 1.000cm^3 </math> eine der beiden Variablen ersetzt werden (beispielsweise <math> h </math>).
   −
<math> V = \pi r^2h </math> -> <math> h = \frac{V}{\pi r^2} = \frac{1000}{\pi r^2} </math>  (<math> h </math> bzw. <math> r </math> sind in <math> cm </math> anzugeben)
+
<math> V = \pi r^2h </math> <math> \Rightarrow </math> <math> h = \frac{V}{\pi r^2} = \frac{1000}{\pi r^2} </math>  (<math> h </math> bzw. <math> r </math> sind in <math> cm </math> anzugeben)
      Zeile 71: Zeile 71:  
</math>
 
</math>
   −
-> <math> r ≈ 5,419cm </math>
+
<math> \rightarrow r ≈ 5,419cm </math>
    
<math>
 
<math>
Zeile 99: Zeile 99:  
* Viele Extremwertaufgaben sind eindeutig lösbar, jedoch entstehen im Rahmen der Kompetenzorientierung, hinsichtlich der [[Modellierungskompetenz]], auch Modellierungsaufgaben ohne eindeutige Lösung, was für Schülerinnen und Schüler ungewohnt sein kann.
 
* Viele Extremwertaufgaben sind eindeutig lösbar, jedoch entstehen im Rahmen der Kompetenzorientierung, hinsichtlich der [[Modellierungskompetenz]], auch Modellierungsaufgaben ohne eindeutige Lösung, was für Schülerinnen und Schüler ungewohnt sein kann.
   −
* Für Schülerinnen und Schüler könnte es irritierend sein, dass nicht alle mathematischen Lösungen auch gleichzeitig Lösungen des praktischen Problems darstellen und das sie dies begründen müssen.
+
* Für Schülerinnen und Schüler könnte es irritierend sein, dass nicht alle mathematischen Lösungen auch gleichzeitig Lösungen des praktischen Problems darstellen und dass sie dies begründen müssen.
    
==Quellen==
 
==Quellen==
88

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü