Änderungen

Zur Navigation springen Zur Suche springen
83 Bytes hinzugefügt ,  15:43, 7. Jun. 2017
K
keine Bearbeitungszusammenfassung
Zeile 8: Zeile 8:       −
„Unter ''Extremwertaufgaben'' versteht man Textaufgaben, bei denen eine Größe unter Beachtung einer Nebenbedingung maximiert bzw. minimiert werden soll. Die Aufgaben sind in der Regel so geartet, dass man eine [[Funktion]] von zwei Veränderlichen[Variablen] unter Benutzung einer Gleichung für die Nebenbedingung in eine Funktion einer Veränderlichen umwandelt, für die man dann die Extremstellen bestimmt. Durch den Vergleich aller lokalen Maximal- bzw. Minimalwerte in dem durch die Aufgabe gegebenen Gültigkeitsintervalls untereinander und mit den Werten am Rand des Intervalls gelangt man zu einer Lösung.“<ref>Tietze, U.; Klika, M.; Wolpers, H.(1997): Mathematikunterricht in der Sekundarstufe II. Band 1: Fachdidaktische Grundfragen. Didaktik der Analysis. Vieweg Verlag</ref>
+
„Unter ''Extremwertaufgaben'' versteht man Textaufgaben, bei denen eine Größe unter Beachtung einer Nebenbedingung maximiert bzw. minimiert werden soll. Die Aufgaben sind in der Regel so geartet, dass man eine [[Funktion]] von zwei Veränderlichen [Variablen] unter Benutzung einer Gleichung für die Nebenbedingung in eine Funktion einer Veränderlichen umwandelt, für die man dann die Extremstellen bestimmt. Durch den Vergleich aller lokalen Maximal- bzw. Minimalwerte in dem durch die Aufgabe gegebenen Gültigkeitsintervalls untereinander und mit den Werten am Rand des Intervalls gelangt man zu einer Lösung.“<ref>[[Uwe-Peter Tietze|Tietze, U.]]; [[Manfred Klika|Klika, M.]]; Wolpers, H.(1997): Mathematikunterricht in der Sekundarstufe II. Band 1: Fachdidaktische Grundfragen. Didaktik der Analysis. Vieweg Verlag</ref>
 
      
==Algorithmus zur Lösung von Extremwertaufgaben==
 
==Algorithmus zur Lösung von Extremwertaufgaben==
   −
===Allgemeiner Algorithmus<ref>Danckwerts,R.; Vogel, D. (2006): Analysis verständlich unterrichten. Spektrum AkademischerVerlag</ref>===  
+
===Allgemeiner Algorithmus<ref>[[Rainer Danckwerts|Danckwerts, R.]]; Vogel, D. (2006): Analysis verständlich unterrichten. Spektrum AkademischerVerlag</ref>===  
    
1.Schritt:  Welche Größe ist zu optimieren? Stellen Sie eine Funktion (Zielfunktion) auf um diese Größe zu berechnen. Bestimmen Sie den [[Definitionsbereich]] der Funktion.
 
1.Schritt:  Welche Größe ist zu optimieren? Stellen Sie eine Funktion (Zielfunktion) auf um diese Größe zu berechnen. Bestimmen Sie den [[Definitionsbereich]] der Funktion.
Zeile 27: Zeile 26:       −
<math> \rightarrow </math> Ähnliche Algorithmen finden sich bei: <ref>Frank, B.; Schulz, W.; Tietz, W.;Warmuth, E. (2004): Wissensspeicher Mathematik. Cornelsen Verlag</ref> und <ref>Seeger, H.: Mathematik. Prüfungs- und Basiswissen der Oberstufe. Tandem Verlag</ref>
+
<math> \rightarrow </math> Ähnliche Algorithmen finden sich bei: <ref>Frank, B.; Schulz, W.; Tietz, W.; [[Elke Warmuth|Warmuth, E.]] (2004): Wissensspeicher Mathematik. Cornelsen Verlag</ref> und <ref>Seeger, H.: Mathematik. Prüfungs- und Basiswissen der Oberstufe. Tandem Verlag</ref>
      Zeile 35: Zeile 34:  
''Welche Abmessungen muss eine Dose mit einem Volumen von <math> 1l </math> haben, damit möglichst wenig Material für ihre Herstellung benötigt wird?''
 
''Welche Abmessungen muss eine Dose mit einem Volumen von <math> 1l </math> haben, damit möglichst wenig Material für ihre Herstellung benötigt wird?''
   −
(Dies ist eine Standardaufgabe bei der Behandlung von Extremwertaufgaben, welche sich so, oder so ähnlich in vielen Lehrbüchern wiederfindet.)
+
(Dies ist eine Standardaufgabe bei der Behandlung von Extremwertaufgaben, welche sich so oder so ähnlich in vielen Lehrbüchern wiederfindet.)
      Zeile 58: Zeile 57:       −
3.  
+
3.
 +
 
 
<math>
 
<math>
 
\begin{eqnarray}
 
\begin{eqnarray}
A &= &2\pi r^2 + \frac{2000}{r}
+
A &= &2\pi r^2 + \frac{2000}{r}\\
A' &= &4\pi r - \frac{2000}{r^2}
+
A' &= &4\pi r - \frac{2000}{r^2}\\
0& =& 4\pi r - \frac{2000}{r^2}
+
0& =& 4\pi r - \frac{2000}{r^2}\\
 
&\rightarrow& r ≈ 5,419cm  
 
&\rightarrow& r ≈ 5,419cm  
 
\end{eqnarray}</math>
 
\end{eqnarray}</math>
    
<math>
 
<math>
A´´ = 4\pi + \frac{4000}{r^3} > 0 </math> für alle <math> r > 0 </math>  -> lokales Minimum bei <math> r ≈ 5,419cm </math>
+
A'' = 4\pi + \frac{4000}{r^3} > 0 </math> für alle <math> r > 0 </math>  -> lokales Minimum bei <math> r ≈ 5,419cm </math>
     
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü