Änderungen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
Zeile 25: Zeile 25:  
<br /> + <math>0,\overline{9} = 0,999.999.999.999...</math>
 
<br /> + <math>0,\overline{9} = 0,999.999.999.999...</math>
 
<br /> = <math> \epsilon + 0,\overline{9} = 1,000.000.000.999 >  1</math>, im Widerspruch zur Annahme.
 
<br /> = <math> \epsilon + 0,\overline{9} = 1,000.000.000.999 >  1</math>, im Widerspruch zur Annahme.
<br /> Dies ergibt sich ganz genauso für jedes <math> \epsilon = 10^{-k} </math> mit ''k'' aus den natürlichen Zahlen, man erhält stets einen Widerspruch zur Annahme. Da <math>0,\overline{9} > 1</math> ohnehin ausgeschlossen werden kann, muss <math> \textstyle 0,\overline{9} = 1</math> sein. Es gibt also keinen Abstand <math> \epsilon </math> zwischen <math> \textstyle 0,\overline{9} </math>und 1, egal wie klein <math> \epsilon </math> gewählt wird.
+
<br /> Dies ergibt sich ganz genauso für jedes <math> \epsilon = 10^{-k} </math> mit ''k'' aus den natürlichen Zahlen, man erhält stets einen Widerspruch zur Annahme. Da <math>0,\overline{9} > 1</math> ohnehin ausgeschlossen werden kann, muss <math> \textstyle 0,\overline{9} = 1</math> sein. Es gibt also keinen Abstand <math> \epsilon </math> zwischen <math> \textstyle 0,\overline{9} </math> und 1, egal wie klein <math> \epsilon </math> gewählt wird.
    
'''Beweise mit unendlichen geometrischen Reihen''' <ref name="Vogel"> Danckwerts, Rainer; Vogel, Danckwart: Analysis verständlich unterrichten. Spektrum Akademischer Verlag, 1. Auflage, Berlin Heidelberg 2006</ref>
 
'''Beweise mit unendlichen geometrischen Reihen''' <ref name="Vogel"> Danckwerts, Rainer; Vogel, Danckwart: Analysis verständlich unterrichten. Spektrum Akademischer Verlag, 1. Auflage, Berlin Heidelberg 2006</ref>
Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü