Weg-Zeit-Diagramme: Unterschied zwischen den Versionen
| [unmarkierte Version] | [unmarkierte Version] |
| Zeile 23: | Zeile 23: | ||
Die Geschwindigkeit des Autos zum Zeitpunkt <math> t_0=4s </math> entspricht der ersten Ableitung nach der Zeit an der Stelle <math> t_0=4s </math>: | Die Geschwindigkeit des Autos zum Zeitpunkt <math> t_0=4s </math> entspricht der ersten Ableitung nach der Zeit an der Stelle <math> t_0=4s </math>: | ||
| − | <math> s=v \cdot t | + | <math> s=v \cdot t</math> |
| − | s'=v | + | |
| + | <math>s'=v</math> | ||
| + | |||
| − | |||
[[Kategorie: Analysis]] | [[Kategorie: Analysis]] | ||
Version vom 15. Januar 2013, 18:12 Uhr
Weg-Zeit-Diagramme sind eine spezielle Form der Darstellung von Sachverhalten, bei denen der Weg s von der Zeit t abhängt.
Dabei wird die Zeit t auf der Abzissen-, der Weg s auf der Ordinatenachse abgetragen.
Der Anstieg zu einem Zeitpunkt t ist die Geschwindigkeit.
Beispielaufgabe
Ein Auto fahre mit konstanter Geschwindigkeit. Es legt in 2 Sekunden 10 Meter, in 4 Sekunden 20 Meter, usw. zurück. Folgendes Weg-Zeit-Diagramm entsteht:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s(t)} ist eine lineare Funktion. Die Geschwindigkeit des Autos zum Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t_0=4s } entspricht der ersten Ableitung nach der Zeit an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle t_0=4s } :
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s=v \cdot t}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle s'=v}