Zeile 1: |
Zeile 1: |
| <small><small>Verfasst von [[Horst Hischer]]</small></small> | | <small><small>Verfasst von [[Horst Hischer]]</small></small> |
| ==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>== | | ==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>== |
− | Der Terminus „Relation“ wird in der heutigen Mathematik im Sinne von „Beziehung“ (und damit als „[[Zuordnung]]“) verwendet. Im einfachsten Fall wird es im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen (genauer: zwischen den Elementen von zwei Mengen) zu beschreiben, also darum, ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden.<br /> | + | Der Terminus „Relation“ wird in der heutigen Mathematik im Sinne von „Beziehung“ (und damit als „[[Zuordnung]]“) verwendet. <ref>Diese Deutung von „Relation“ als „Beziehung“ geht auf die in der Logik (als einer philosophischen Disziplin) übliche Bedeutung zurück, während das lateinische „relatio“ zunächst nur „Bericht(erstattung)“ oder „Vortrag“ bedeutete.</ref> Im einfachsten Fall wird es im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen (genauer: zwischen den Elementen von zwei Mengen) zu beschreiben, also darum, ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden.<br /> |
| Sofort ist ersichtlich, dass eine konkrete, etwa mit <math>R</math> bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare <math>(a,b)</math> aus der „Produktmenge“ <math>A\times B</math> gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge <math>A\times B</math> als eine ''„Relation zwischen <math>A</math> und <math>B</math>“'' – oder genauer: als eine ''„Relation von <math>A</math> nach <math>B</math>“'' – aufzufassen.<br /> | | Sofort ist ersichtlich, dass eine konkrete, etwa mit <math>R</math> bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare <math>(a,b)</math> aus der „Produktmenge“ <math>A\times B</math> gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge <math>A\times B</math> als eine ''„Relation zwischen <math>A</math> und <math>B</math>“'' – oder genauer: als eine ''„Relation von <math>A</math> nach <math>B</math>“'' – aufzufassen.<br /> |
| Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung und Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen. | | Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung und Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen. |