Änderungen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
Zeile 70: Zeile 70:  
Die Funktion f(x)=x²+px+q hat genau zwei verschiedene und reelle Nullstellen, wenn D>0, genau eine doppelte und reelle Nullstelle ([[Scheitelpunkt]]), wenn D=0, und keine reelle Nullstelle, aber zwei verschiedene komplexe Nullstellen, wenn D<0 ist.
 
Die Funktion f(x)=x²+px+q hat genau zwei verschiedene und reelle Nullstellen, wenn D>0, genau eine doppelte und reelle Nullstelle ([[Scheitelpunkt]]), wenn D=0, und keine reelle Nullstelle, aber zwei verschiedene komplexe Nullstellen, wenn D<0 ist.
   −
==Quadratische Funktionen - ein didaktischer Ansatz<ref>aus Danckwerts/Vogel:Analysis verständlich unterrichten, 1.Auflage 2006, Springer Verlag Berlin-Heidelberg</ref>==
+
==Quadratische Funktionen - ein didaktischer Ansatz<ref>Vgl. Altvater, Olaf; Woznik, Thomas (1998): Quadratische Funktionen selbständig entdecken. In: Mathematik in der Schule, 36(1998), H. 2. S. 80 - 92.</ref>==
    
In vielen Schulbüchern beginnt der Einstieg in das Thema "quadratische Funktionen" mit der Betrachtung der Normalparabel f(x)=x². Anschließend wird durch Verschiebung, Streckung bzw. Stauchung die allgemeine quadratischen Funktion in Normal- und Scheitelpunktsform hergeleitet. Im Folgendem wird ein anderer Einstieg in die Thematik dargelegt.  
 
In vielen Schulbüchern beginnt der Einstieg in das Thema "quadratische Funktionen" mit der Betrachtung der Normalparabel f(x)=x². Anschließend wird durch Verschiebung, Streckung bzw. Stauchung die allgemeine quadratischen Funktion in Normal- und Scheitelpunktsform hergeleitet. Im Folgendem wird ein anderer Einstieg in die Thematik dargelegt.  
64

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von madipedia. Durch die Nutzung von madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü