Astrid Beckmann

Aus madipedia
Zur Navigation springen Zur Suche springen
MadipediaBegutachtete
Dissertationen
MadipediaBetreute
Dissertationen
MadipediaPublikationen

Prof. Dr. rer. nat. habil. Astrid Beckmann.
Professorin für Mathematik und ihre Didaktik. Pädagogische Hochschule Schwäbisch Gmünd.
Eigene Homepage: http://www.ph-gmuend.de/deutsch/lehrende-a-z/b/beckmann-astrid.php.
Dissertation: Zur didaktischen Bedeutung der abbildungsgeometrischen Beweismethode für 12- bis 15jährige Schüler.
E-Mail


Kurzvita

Geboren und aufgewachsen in Berlin, Studium der Mathematik und Physik an der Freien Universität Berlin, Referendariat in Darmstadt, wissenschaftliche Mitarbeiterin an den Universitäten Frankfurt/Main und Gießen mit Promotion zum Dr. rer. nat. mit dem Thema: Zur didaktischen Bedeutung der abbildungsgeometrischen Beweismethode für 12- bis 15jährige Schüler.

Langjährige Schulpraxis. Studienrätin für Mathematik und Physik in Lemgo / Ostwestfalen mit gleichzeitiger Tätigkeit als Lehrbeauftragte an der Universität Hannover und Habilitation mit dem Thema: Fächerübergreifender Mathematikunterricht: Ein Modell, Ziele und fachspezifische Diskussion, Mathematikunterricht in Kooperation mit dem Fach Physik, dem Fach Deutsch und Informatik, venia legendi für Didaktik der Mathematik.

  • Seit 01.02.2003 Professorin für Mathematik und Mathematikdidaktik an der PH Schwäbisch Gmünd.
  • 2003 – 2005 Leitung des Instituts für Mathematik und Informatik,
  • 2005 – 2008 Prorektorin für Forschung, Entwicklung und internationale Beziehungen,
  • seit 2006 Koordinatorin des EU-Projekts ScienceMath
  • seit 2009 Rektorin der PH Schwäbisch Gmünd

Veröffentlichungen

Monographien

  • Beckmann, A. (2009). A Conceptual Framework for Cross-Curricular Teaching. Special Issue on Interdisciplinary Teaching. The Montana Mathematics Enthuisiast 6/1, March 2009/ Printversion, S. 1 – 56.
  • Beckmann, A. (2006). Experimente zum Funktionsbegriffserwerb, Köln (Aulis-Verlag).
  • Beckmann, A.: (2003). Fächerübergreifender Mathematikunterricht,
    • Tl. 1: Ein Modell, Ziele und fachspezifische Diskussion,
    • Tl, 2: Mathematikunterricht in Kooperation mit dem Fach Physik,
    • Tl. 3: Mathematikunterricht in Kooperation mit dem Fach Deutsch,
    • Tl. 4: Mathematikunterricht in Kooperation mit Informatik. Hildesheim, Berlin (Franzbecker).
  • Beckmann, A. (2003). Fächerübergreifender Unterricht – Konzept und Begründung, Hildesheim, Berlin (Franzbecker).
  • Beckmann, A. (1997). Beweisen im Geometrieunterricht der Sekundarstufe I., Hamburg, Münster, London (LIT).

Arbeitsgebiete

  • Fächerübergreifender Mathematikunterricht:
  • Förderung des Mathematiklernens durch Aspekte und Methoden aus anderen Fächern,
  • Experimente im Mathematikunterricht, speziell Förderung des Funktionsbegriffserwerbs durch Experimente Computereinsatz (abgeschlossene Projekte)

Projekte

  • EU-Projekt: ScienceMath: Mathematical literacy and Cross Curricular Competencies through Interdisciplinarity, Mathematising and Modelling Science, Kooperation mit Universität Turku, Finnland, Universität Süddänemark, Universität Ljubljana, Slovenien und verschiedenen Schulen aus den Ländern, Förderung: Europäische Kommission www.sciencemath.ph-gmuend.de
  • Untersuchung der Wirksamkeit von fächerübergreifenden Unterricht auf den mathematischen begriffserwerb
  • MACAS – Netzwerk: Mathematics and ist Connections to the Arts and Sciences, internationales Netzwerk mit Organisation der MACAS-Symposien, 2005 Schwäbisch Gmünd, 2007 Odense, 2009 Moncton, 2011 Montana
  • Network for better Education in Mathematics, Science and Arts, transatlantisches Kooperationsprojekt mit Universität Moncton, Kanada, Montana University USA
  • INSCIME: Integration of students with different social and cultural background through interdisciplinary mathematical education, internationals Kooperationsprojekt
  • Ein mathematischer Weg durch meine Stadt, www.mathematischer-weg.ph-gmuend.de

Mitgliedschaften